Almost-sure growth rate of generalized random Fibonacci sequences
Élise Janvresse; Benoît Rittaud; Thierry de la Rue
Annales de l'I.H.P. Probabilités et statistiques (2010)
- Volume: 46, Issue: 1, page 135-158
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topJanvresse, Élise, Rittaud, Benoît, and de la Rue, Thierry. "Almost-sure growth rate of generalized random Fibonacci sequences." Annales de l'I.H.P. Probabilités et statistiques 46.1 (2010): 135-158. <http://eudml.org/doc/243041>.
@article{Janvresse2010,
abstract = {We study the generalized random Fibonacci sequences defined by their first non-negative terms and for n≥1, Fn+2=λFn+1±Fn (linear case) and ̃Fn+2=|λ̃Fn+1±̃Fn| (non-linear case), where each ± sign is independent and either + with probability p or − with probability 1−p (0<p≤1). Our main result is that, when λ is of the form λk=2cos(π/k) for some integer k≥3, the exponential growth of Fn for 0<p≤1, and of ̃Fn for 1/k<p≤1, is almost surely positive and given by ∫0∞log x dνk, ρ(x), where ρ is an explicit function of p depending on the case we consider, taking values in [0, 1], and νk, ρ is an explicit probability distribution on ℝ+ defined inductively on generalized Stern–Brocot intervals. We also provide an integral formula for 0<p≤1 in the easier case λ≥2. Finally, we study the variations of the exponent as a function of p.},
author = {Janvresse, Élise, Rittaud, Benoît, de la Rue, Thierry},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random Fibonacci sequence; Rosen continued fraction; upper Lyapunov exponent; Stern–Brocot intervals; Hecke group; Lyapunov exponent},
language = {eng},
number = {1},
pages = {135-158},
publisher = {Gauthier-Villars},
title = {Almost-sure growth rate of generalized random Fibonacci sequences},
url = {http://eudml.org/doc/243041},
volume = {46},
year = {2010},
}
TY - JOUR
AU - Janvresse, Élise
AU - Rittaud, Benoît
AU - de la Rue, Thierry
TI - Almost-sure growth rate of generalized random Fibonacci sequences
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2010
PB - Gauthier-Villars
VL - 46
IS - 1
SP - 135
EP - 158
AB - We study the generalized random Fibonacci sequences defined by their first non-negative terms and for n≥1, Fn+2=λFn+1±Fn (linear case) and ̃Fn+2=|λ̃Fn+1±̃Fn| (non-linear case), where each ± sign is independent and either + with probability p or − with probability 1−p (0<p≤1). Our main result is that, when λ is of the form λk=2cos(π/k) for some integer k≥3, the exponential growth of Fn for 0<p≤1, and of ̃Fn for 1/k<p≤1, is almost surely positive and given by ∫0∞log x dνk, ρ(x), where ρ is an explicit function of p depending on the case we consider, taking values in [0, 1], and νk, ρ is an explicit probability distribution on ℝ+ defined inductively on generalized Stern–Brocot intervals. We also provide an integral formula for 0<p≤1 in the easier case λ≥2. Finally, we study the variations of the exponent as a function of p.
LA - eng
KW - random Fibonacci sequence; Rosen continued fraction; upper Lyapunov exponent; Stern–Brocot intervals; Hecke group; Lyapunov exponent
UR - http://eudml.org/doc/243041
ER -
References
top- [1] A. Denjoy. Sur une fonction réelle de Minkowski. J. Math. Pures Appl. 17 (1938) 105–151. Zbl0018.34602JFM64.0188.02
- [2] M. Embree and L. N. Trefethen. Growth and decay of random Fibonacci sequences. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455 (1999) 2471–2485. Zbl0941.37038MR1807827
- [3] H. Furstenberg. Noncommuting random products. Trans. Amer. Math. Soc. 108 (1963) 377–428. Zbl0203.19102MR163345
- [4] Y. Guivarc’h and A. Raugi. Frontière de Furstenberg, propriétés de contraction et théorèmes de convergence. Z. Wahrsch. Verw. Gebiete 69 (1985) 187–242. Zbl0558.60009MR779457
- [5] Y. Guivarc’h and É. Le Page. Simplicité de spectres de Lyapounov et propriété d’isolation spectrale pour une famille d’opérateurs de transfert sur l’espace projectif. In Random Walks and Geometry 181–259. Walter de Gruyter, Berlin, 2004. Zbl1069.60005
- [6] É. Janvresse, B. Rittaud and T. de la Rue. Growth rate for the expected value of a generalized random Fibonacci sequence. J. Phys. A: Math. Theory 42 (2009). Zbl1206.11019MR2525481
- [7] É. Janvresse, B. Rittaud and T. de la Rue. How do random Fibonacci sequences grow? Probab. Theory Related Fields 142 (2008) 619–648. Zbl1146.37035MR2438703
- [8] S. P. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability. Communications and Control Engineering Series. Springer, London, 1993. Zbl0925.60001MR1287609
- [9] Y. Peres. Analytic dependence of Lyapunov exponents on transition probabilities. In Lyapunov Exponents (Oberwolfach, 1990) 64–80. Lecture Notes in Math. 1486. Springer, Berlin, 1991. Zbl0762.60005MR1178947
- [10] B. Rittaud. On the average growth of random Fibonacci sequences. J. Int. Seq. 10 (2007) 1–32 (electronic). Zbl1127.11013MR2276788
- [11] D. Rosen. A class of continued fractions associated with certain properly discontinuous groups. Duke Math. J. 21 (1954) 549–563. Zbl0056.30703MR65632
- [12] C. Sire and P. L. Krapivsky. Random fibonacci sequences. J. Phys. A 34 (2001) 9065–9083. Zbl0996.60111MR1876126
- [13] D. Viswanath. Random Fibonacci sequences and the number 1.13198824… Math. Comp. 69 (2000) 1131–1155. Zbl0983.11007MR1654010
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.