A duality result for moduli spaces of semistable sheaves supported on projective curves

Mario Maican

Rendiconti del Seminario Matematico della Università di Padova (2010)

  • Volume: 123, page 55-68
  • ISSN: 0041-8994

How to cite

top

Maican, Mario. "A duality result for moduli spaces of semistable sheaves supported on projective curves." Rendiconti del Seminario Matematico della Università di Padova 123 (2010): 55-68. <http://eudml.org/doc/243299>.

@article{Maican2010,
author = {Maican, Mario},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Moduli spaces; coherent sheaves; Hilbert polynomial; monad},
language = {eng},
pages = {55-68},
publisher = {Seminario Matematico of the University of Padua},
title = {A duality result for moduli spaces of semistable sheaves supported on projective curves},
url = {http://eudml.org/doc/243299},
volume = {123},
year = {2010},
}

TY - JOUR
AU - Maican, Mario
TI - A duality result for moduli spaces of semistable sheaves supported on projective curves
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2010
PB - Seminario Matematico of the University of Padua
VL - 123
SP - 55
EP - 68
LA - eng
KW - Moduli spaces; coherent sheaves; Hilbert polynomial; monad
UR - http://eudml.org/doc/243299
ER -

References

top
  1. [1] Aleksandr Beilinson, Coherent Sheaves on n and Problems of Linear Algebra, Func. Anal. Appl., 12 (1979), pp. 214--216. (Translation of Funktsional. Anal. i Prilozhen. 12 (1978), pp. 68--69.) Zbl0424.14003MR509388
  2. [2] Jean-Marc Drézet, Variétés de modules extrémales de faisceaux semi-stables sur 2 ( C ) , Math. Ann., 290 (1991), pp. 727--770. Zbl0755.14005MR1119949
  3. [3] Jean-Marc Drézet - Günther Trautmann, Moduli Spaces of Decomposable Morphisms of Sheaves and Quotients by Non-Reductive Groups, Ann. Inst. Fourier, 53 (2003), pp. 107--192. Zbl1034.14023
  4. [4] David Eisenbud - Gunnar Fløystad - Frank-Olaf Schreyer, Sheaf Cohomology and Free Resolutions over Exterior Algebras, Trans. Am. Math. Soc., 355 (2003), pp. 4397--4426. Zbl1063.14021MR1990756
  5. [5] Hans-Georg Freiermuth, On the Moduli Space M P ( 3 ) of Semi-stable Sheaves on 3 with Hilbert Polynomial P ( m ) = 3 m + 1 , Diplomarbeit at Univ. Kaiserslautern (December, 2000). 
  6. [6] Hans-Georg Freiermuth - Günther Trautmann, On the Moduli Scheme of Stable Sheaves Supported on Cubic Space Curves, Amer. J. Math., 126 (2004), pp. 363--393. Zbl1069.14012MR2045505
  7. [7] Alexandre Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux, Séminaire de Géométrie Algébrique du Bois Marie 1962, Societé Mathématique de France, e-print 0511279. Zbl1079.14001
  8. [8] Robin Hartshorne, Residues and Duality, Lecture Notes in Mathematics, 20 (Springer Verlag, Berlin, 1966). Zbl0212.26101MR222093
  9. [9] Robin Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, 52 (Springer Verlag, New York, 1977). Zbl0367.14001MR463157
  10. [10] Peter Hilton - Urs Stammbach, A Course in Homological Algebra, Graduate Texts in Mathematics, 4 (Springer Verlag, New York, 1971). Zbl0238.18006MR346025
  11. [11] James Humphreys, Linear Algebraic Groups, Graduate Texts in Mathematics, 21 (Springer Verlag, New York, 1975). Zbl0325.20039MR396773
  12. [12] Daniel Huybrechts - Manfred Lehn, The Geometry of Moduli Spaces of Sheaves, Aspects of Mathematics, E31 (Friedr. Vieweg & Sohn, Braunschweig, 1997). Zbl0872.14002MR1450870
  13. [13] Joseph Le Potier, Lectures on Vector Bundles, Cambridge University Press, 1997, translated by A. Maciocia. Zbl0872.14003MR1428426
  14. [14] Mario Maican, On Two Notions of Semistability, Pacific J. Math., 234 (2008), pp. 69--135. Zbl1160.14007MR2375315
  15. [15] Christian Okonek - Michael Schneider - Heinz Spindler, Vector Bundles on Complex Projective Spaces, Progress in Mathematics, 3 (Birkhäuser, Boston, 1980). Zbl0438.32016MR561910

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.