Atiyah Classes and Closed Forms on Moduli Spaces of Sheaves
Francesco Bottacin (2009)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Francesco Bottacin (2009)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Carlos T. Simpson (1994)
Publications Mathématiques de l'IHÉS
Similarity:
Francesco Sala (2012)
Open Mathematics
Similarity:
We provide generalizations of the notions of Atiyah class and Kodaira-Spencer map to the case of framed sheaves. Moreover, we construct closed two-forms on the moduli spaces of framed sheaves on surfaces. As an application, we define a symplectic structure on the moduli spaces of framed sheaves on some birationally ruled surfaces.
Bruzzo, Ugo, Markushevish, Dimitri (2011)
Documenta Mathematica
Similarity:
Toma, Matei (2001)
Documenta Mathematica
Similarity:
Ingo Waschkies (2004)
Bulletin de la Société Mathématique de France
Similarity:
In this paper we construct the abelian stack of microlocal perverse sheaves on the projective cotangent bundle of a complex manifold. Following ideas of Andronikof we first consider microlocal perverse sheaves at a point using classical tools from microlocal sheaf theory. Then we will use Kashiwara-Schapira’s theory of analytic ind-sheaves to globalize our construction. This presentation allows us to formulate explicitly a global microlocal Riemann-Hilbert correspondence.
Jun-Muk Hwang, Yasunari Nagai (2008)
Annales de l’institut Fourier
Similarity:
We show that the Beauville’s integrable system on a ten dimensional moduli space of sheaves on a K3 surface constructed via a moduli space of stable sheaves on cubic threefolds is algebraically completely integrable, using O’Grady’s construction of a symplectic resolution of the moduli space of sheaves on a K3.
Fabrizio Andreatta, Adrian Iovita (2012)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Robin Hartshorne (1971)
Compositio Mathematica
Similarity:
Björn Andreas, Daniel Hernández Ruipérez (2005)
RACSAM
Similarity:
El artículo es una introducción a la transformación de Fourier-Mukai y sus aplicaciones a varios problemas de móduli, teoría de cuerdas y simetría "mirror". Se desarrollan los fundamentos necesarios para las transformaciones de Fourier-Mukai, entre ellos las categorías derivadas y los functores integrales. Se explican además sus versiones relativas, que se necesitan para precisar la noción de T-dualidad fibrada en variedades de Calabi-Yau elípticas de dimensión tres. Se consideran también...