On quasi-polarized manifolds whose sectional genus is equal to the irregularity

Yoshiaki Fukuma

Rendiconti del Seminario Matematico della Università di Padova (2011)

  • Volume: 125, page 107-118
  • ISSN: 0041-8994

How to cite

top

Fukuma, Yoshiaki. "On quasi-polarized manifolds whose sectional genus is equal to the irregularity." Rendiconti del Seminario Matematico della Università di Padova 125 (2011): 107-118. <http://eudml.org/doc/243318>.

@article{Fukuma2011,
author = {Fukuma, Yoshiaki},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {quasi-polarized manifold; sectional genus},
language = {eng},
pages = {107-118},
publisher = {Seminario Matematico of the University of Padua},
title = {On quasi-polarized manifolds whose sectional genus is equal to the irregularity},
url = {http://eudml.org/doc/243318},
volume = {125},
year = {2011},
}

TY - JOUR
AU - Fukuma, Yoshiaki
TI - On quasi-polarized manifolds whose sectional genus is equal to the irregularity
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2011
PB - Seminario Matematico of the University of Padua
VL - 125
SP - 107
EP - 118
LA - eng
KW - quasi-polarized manifold; sectional genus
UR - http://eudml.org/doc/243318
ER -

References

top
  1. [1] A. Beauville, L’inegalite p g 2 q - 4 pour les surfaces de type général, Bull. Soc. Math. France, 110 (1982), pp. 343–346. Zbl0543.14026MR688038
  2. [2] M. C. Beltrametti - A. J. Sommese, The adjunction theory of complex projective varieties, de Gruyter Expositions in Math. 16, Walter de Gruyter, Berlin, NewYork (1995). Zbl0845.14003MR1318687
  3. [3] J. P. Demaily, Effective bounds for very ample line bundles, Invent. Math., 124 (1996), pp. 243–261. Zbl0862.14004MR1369417
  4. [4] H. Esnault - E. Viehweg, Effective bounds for semipositive sheaves and for the height of points on curves over complex function fields, Composit. Math., 76 (1990), pp. 69–85. Zbl0742.14020MR1078858
  5. [5] T. Fujita, On the structure of polarized varieties with Δ -genera zero, J. Fac. Sci. Univ. of Tokyo, 22 (1975), pp. 103–115. Zbl0333.14004MR369363
  6. [6] T. Fujita, Remarks on quasi-polarized varieties, Nagoya Math. J., 115 (1989), pp. 105–123. Zbl0699.14002MR1018086
  7. [7] T. Fujita, Classification Theories of Polarized Varieties, London Math. Soc. Lecture Note Ser., 155, Cambridge University Press (1990). Zbl0743.14004MR1162108
  8. [8] Y. Fukuma, On polarized surfaces ( X , L ) with h 0 ( L ) g t ; 0 , κ ( X ) = 2 , and g ( L ) = q ( X ) , Trans. Amer. Math. Soc., 348 (1996), pp. 4185–4197. Zbl0878.14005MR1370640
  9. [9] Y. Fukuma, A lower bound for the sectional genus of quasi-polarized surfaces, Geom. Dedicata, 64 (1997), pp. 229–251. Zbl0897.14008MR1436766
  10. [10] Y. Fukuma, A lower bound for sectional genus of quasi-polarized manifolds, J. Math. Soc. Japan, 49 (1997), pp. 339–362. Zbl0899.14003MR1601389
  11. [11] Y. Fukuma, On the nonemptiness of the linear system of polarized manifolds, Canad. Math. Bull., 41 (1998), pp. 267–278. Zbl0955.14040MR1637645
  12. [12] Y. Fukuma, On sectional genus of quasi-polarized 3 -folds, Trans. Amer. Math. Soc., 351 (1999), pp. 363–377. Zbl0905.14003MR1487615
  13. [13] Y. Fukuma, On the sectional geometric genus of quasi-polarized varieties, II, Manuscripta Math., 113 (2004), pp. 211–237. Zbl1080.14013MR2128547
  14. [14] Y. Fukuma, A lower bound for sectional genus of quasi-polarized manifolds, II, preprint, http://www.math.kochi-u.ac.jp/fukuma/preprint.html Zbl0899.14003MR1601389
  15. [15] A. Höring, On a conjecture of Beltrametti and Sommese, arXiv:0912.1295, to appear in J. Algebraic Geom. Zbl1253.14007
  16. [16] A. Höring, The sectional genus of quasi-polarised varieties, Arch. Math., 95 (2010), pp. 125–133. Zbl1198.14008MR2674248
  17. [17] A. J. Sommese, On the adjunction theoretic structure of projective varieties, Complex analysis and algebraic geometry (Göttingen, 1985), pp. 175–213, Lecture Notes in Math., 1194 (Springer, Berlin, 1986). Zbl0601.14029MR855885

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.