Effective bounds for semipositive sheaves and for the height of points on curves over complex function fields

Hélène Esnault; Eckart Viehweg

Compositio Mathematica (1990)

  • Volume: 76, Issue: 1-2, page 69-85
  • ISSN: 0010-437X

How to cite

top

Esnault, Hélène, and Viehweg, Eckart. "Effective bounds for semipositive sheaves and for the height of points on curves over complex function fields." Compositio Mathematica 76.1-2 (1990): 69-85. <http://eudml.org/doc/90055>.

@article{Esnault1990,
author = {Esnault, Hélène, Viehweg, Eckart},
journal = {Compositio Mathematica},
keywords = {geometric heights; section of surjective morphisms; Mordell conjecture over function fields},
language = {eng},
number = {1-2},
pages = {69-85},
publisher = {Kluwer Academic Publishers},
title = {Effective bounds for semipositive sheaves and for the height of points on curves over complex function fields},
url = {http://eudml.org/doc/90055},
volume = {76},
year = {1990},
}

TY - JOUR
AU - Esnault, Hélène
AU - Viehweg, Eckart
TI - Effective bounds for semipositive sheaves and for the height of points on curves over complex function fields
JO - Compositio Mathematica
PY - 1990
PB - Kluwer Academic Publishers
VL - 76
IS - 1-2
SP - 69
EP - 85
LA - eng
KW - geometric heights; section of surjective morphisms; Mordell conjecture over function fields
UR - http://eudml.org/doc/90055
ER -

References

top
  1. 1 H. Esnault and E. Viehweg, Dyson's lemma for polynomials in several variables (and the theorem of Roth). Invent. Math.78 (1984) 445-490. Zbl0545.10021MR768988
  2. 2 H. Esnault and E. Viehweg, Logarithmic De Rham complexes and vanishing theorems. Invent. Math.86 (1986) 161-194. Zbl0603.32006MR853449
  3. 3 T. Fujita, On Kähler fibre spaces over curves. J. Math. Soc. Japan30 (1978) 779-794. Zbl0393.14006MR513085
  4. 4 H. Grauert, Mordell's Vermutung über rationale Punkte auf algebraischen Kurven und Funktionenkörper. Publ. Math. IHES25 (1965) 131-149. Zbl0137.40503MR222087
  5. 5 Y. Kawamata, A generalization of Kodaira-Ramanujam's vanishing theorem. Math. Ann.261 (1982) 57-71. Zbl0476.14007
  6. 6 Yu. I. Manin, Rational points on an algebraic curve over function fields. Trans. Amer. Math. Soc.50 (1966) 189-234. Zbl0178.55102
  7. 7 S. Mori, Classification of higher-dimensional varieties. Algebraic Geometry. Bowdoin1985. Proc. of Symp. in Pure Math. 46 (1987) 269-331. Zbl0656.14022MR927961
  8. 8 A.N. Parshin, Algebraic curves over function fieldsI. Math. USSR Izv.2 (1968) 1145-1170. Zbl0188.53003
  9. 9 L. Szpiro, Séminaire sur les pinceaux de courbes de genre au moins deux. Astérisque86 (1981). Zbl0463.00009MR642675
  10. 10 E. Viehweg, Vanishing theorems. J. Reine Angew. Math.335 (1982) 1-8. Zbl0485.32019MR667459
  11. 11 E. Viehweg, Weak positivity and the additivity of the Kodaira dimension for certain fibre spaces. Adv. Stud. Pure Math.1 (1983) 329-353North-Holland. Zbl0513.14019MR715656
  12. 12 E. Viehweg, Vanishing theorems and positivity in algebraic fibre spaces. Proc. Intern. Congr. Math., Berkeley1986, 682-687. Zbl0685.14013MR934270
  13. 13 E. Viehweg, Weak positivity and the stability of certain Hilbert points. Invent. Math.96 (1989) 639-667. Zbl0695.14006MR996558
  14. 14 P. Vojta, Mordell's conjecture over function fields. Preprint 1988. Zbl0662.14019
  15. 15 A.N. Parshin, Algebraic curves over function fields. Soviet Math. Dokl.9 (1968) 1419-1422. Zbl0176.50903

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.