Rad-supplemented modules

Engin Büyükaşik; Engin Mermut; Salahattin Özdemir

Rendiconti del Seminario Matematico della Università di Padova (2010)

  • Volume: 124, page 157-177
  • ISSN: 0041-8994

How to cite

top

Büyükaşik, Engin, Mermut, Engin, and Özdemir, Salahattin. "Rad-supplemented modules." Rendiconti del Seminario Matematico della Università di Padova 124 (2010): 157-177. <http://eudml.org/doc/243435>.

@article{Büyükaşik2010,
author = {Büyükaşik, Engin, Mermut, Engin, Özdemir, Salahattin},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {supplements; coneat modules; supplement submodules; proper classes; supplemented modules; Dedekind domains},
language = {eng},
pages = {157-177},
publisher = {Seminario Matematico of the University of Padua},
title = {Rad-supplemented modules},
url = {http://eudml.org/doc/243435},
volume = {124},
year = {2010},
}

TY - JOUR
AU - Büyükaşik, Engin
AU - Mermut, Engin
AU - Özdemir, Salahattin
TI - Rad-supplemented modules
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2010
PB - Seminario Matematico of the University of Padua
VL - 124
SP - 157
EP - 177
LA - eng
KW - supplements; coneat modules; supplement submodules; proper classes; supplemented modules; Dedekind domains
UR - http://eudml.org/doc/243435
ER -

References

top
  1. [1] K. Al-Takhman - C. Lomp - R. Wisbauer, τ -complemented and τ -supplemented modules, Algebra Discrete Math., 3 (2006), pp. 1--16. Zbl1116.16005MR2321929
  2. [2] R. Alizade - G. Bilhan - P. F. Smith, Modules whose maximal submodules have supplements, Comm. Algebra, 29 (6) (2001), pp. 2389--2405. Zbl0989.16001MR1845118
  3. [3] R. Alizade - E. Mermut, The inductive closure of supplements, Journal of the Faculty of Science Ege University, 27 (2004), pp. 33--48. 
  4. [4] F. W. Anderson - K. R. Fuller, Rings and Categories of Modules, Springer, New-York, 1992. Zbl0301.16001MR1245487
  5. [5] G. Azumaya, A characterization of semi-perfect rings and modules, In "Ring Theory," Proc. Biennial Ohio-Denison Conf., World Scientific Publ. (Singapore, 1992) pp. 28--40. Zbl0854.16014MR1344221
  6. [6] L. Bican - T. Kepka - P. Němec, Rings, modules, and preradicals, volume 75 of Lecture Notes in Pure and Applied Mathematics, Marcel Dekker Inc., New York, 1982. Zbl0483.16026MR655412
  7. [7] P. E. Bland, Topics in torsion theory, volume 103 of Mathematical Research, Wiley-VCH Verlag Berlin GmbH, Berlin, 1998. Zbl0899.16013MR1640903
  8. [8] D. Buchsbaum, A note on homology in categories, Ann. of Math., 69 (1) (1959), pp. 66--74. Zbl0084.26801MR140556
  9. [9] E. Büyükaşik - C. Lomp, On a recent generalization of semiperfect rings, Bull. Aust. Math. Soc., 78 (2) (2008), pp. 317--325. Zbl1159.16015MR2466867
  10. [10] J. Clark - C. Lomp - N. Vanaja - R. Wisbauer, Lifting modules, Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2006. Supplements and projectivity in module theory. Zbl1102.16001MR2253001
  11. [11] L. Fuchs, Infinite Abelian Groups, volume 1. Academic Press, New York, 1970. Zbl0209.05503
  12. [12] A. I. Generalov, The w -cohigh purity in a category of modules, Math. Notes, 33 (5-6) (1983), pp. 402--408. Translated from Russian from Mat. Zametki, 33 (5) (1983), pp. 785--796. Zbl0521.16022MR706232
  13. [13] J. S. Golan, Torsion theories, volume 29 of Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Scientific & Technical, Harlow, 1986. Zbl0657.16017MR880019
  14. [14] D. K. Harrison - J. M. Irwin - C. L. Peercy - E. A. Walker, High extensions of abelian groups, Acta Math. Acad. Sci. Hunger., 14 (1963), pp. 319--330. Zbl0127.25402MR156882
  15. [15] K. Honda, Realism in the theory of abelian groups I, Comment. Math. Univ. St. Paul, 5 (1956), pp. 37--75. Zbl0071.02404MR80093
  16. [16] I. Kaplansky, Modules over Dedekind rings and valuation rings, Trans. Amer. Math. Soc., 72 (1952), pp. 327--340. Zbl0046.25701MR46349
  17. [17] F. Kasch, Modules and rings, volume 17 of London Mathematical Society Monographs. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1982. Translated from the German and with a preface by D. A. R. Wallace. Zbl0523.16001MR667346
  18. [18] T. Y. Lam, A first course in noncommutative rings, volume 131 of Graduate Texts in Mathematics, Springer-Verlag, New York, second edition, 2001. Zbl0980.16001MR1838439
  19. [19] C. Lomp, On semilocal modules and rings, Comm. Algebra, 27 (4) (1999), pp. 1921--1935. Zbl0927.16012MR1679679
  20. [20] S. Maclane, Homology. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. Zbl0328.18009MR156879
  21. [21] E. Mermut, Homological Approach to Complements and Supplements, PhD thesis, Dokuz Eylül University, The Graduate School of Natural and Applied Sciences, İzmir/Turkey, 2004. http://www.fbe.deu.edu.tr/ALL_FILES/Tez_Arsivi/2004/DR-t403.pdf. 
  22. [22] A. P. Mishina - L. A. Skornyakov, Abelian groups and modules, volume 107 of American Mathematical Society Translations. Ser. 2. American Mathematical Society, Providence, R. I., 1976. Translated from Russian from Abelevy gruppy i moduli, Izdat. Nauka, Moscow (1969). Zbl0224.13015MR276212
  23. [23] S. Nakahara, On a generalization of semiperfect rings, Osaka J. Math., 20 (1) (1983), pp. 43--50. Zbl0513.16020MR695616
  24. [24] S. Özdemir, Neat and coneat subgroups, M. Sc. Thesis, Dokuz Eylül University, The Graduate School of Natural and Applied Sciences, İzmir/Turkey, 2007. http://www.fbe.deu.edu.tr/ALL_FILES/Tez_Arsivi/2007/YL_t2256.pdf. 
  25. [25] E. G. Sklyarenko, Relative homological algebra in categories of modules, Russian Math. Surveys, 33 (3) (1978), pp. 97--137. Traslated from Russian from Uspehi Mat. Nauk, 33, no. 3 (201), (1978), pp. 85--120. Zbl0449.16028MR498703
  26. [26] Bo T. Stenström, Rings of quotients, Springer-Verlag, New York, 1975. Die Grundlehren der Mathematischen Wissenschaften, Band 217, An introduction to methods of ring theory. Zbl0296.16001MR389953
  27. [27] Bo T. Stenström, High submodules and purity, Arkiv för Matematik, 7 (11) (1967), pp. 173--176. Zbl0153.34303MR223353
  28. [28] Bo T. Stenström, Pure submodules, Arkiv för Matematik, 7 (10) (1967), pp. 159--171. Zbl0153.34302MR223425
  29. [29] Y. Wang - N. Ding, Generalized supplemented modules, Taiwanese J. Math., 10 (6) (2006), pp. 1589--1601. Zbl1122.16003MR2275148
  30. [30] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading, 1991. Zbl0746.16001MR1144522
  31. [31] W. Xue, Characterization of semiperfect and perfect rings, Publicacions Matematiques, 40 (1) (1996), pp. 115--125. Zbl0863.16014MR1397010
  32. [32] H. Zöschinger, Komplementierte Moduln über Dedekindringen, J. Algebra, 29 (1974), pp. 42--56. Zbl0277.13008MR340347
  33. [33] H. Zöschinger, Koatomare Moduln, Math. Z., 170 (3) (1980), pp. 221--232. Zbl0411.13009MR564202

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.