Survival of homogeneous fragmentation processes with killing
Robert Knobloch; Andreas E. Kyprianou
Annales de l'I.H.P. Probabilités et statistiques (2014)
- Volume: 50, Issue: 2, page 476-491
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topKnobloch, Robert, and Kyprianou, Andreas E.. "Survival of homogeneous fragmentation processes with killing." Annales de l'I.H.P. Probabilités et statistiques 50.2 (2014): 476-491. <http://eudml.org/doc/272090>.
@article{Knobloch2014,
abstract = {We consider a homogeneous fragmentation process with killing at an exponential barrier. With the help of two families of martingales we analyse the decay of the largest fragment for parameter values that allow for survival. In this respect the present paper is also concerned with the probability of extinction of the killed process.},
author = {Knobloch, Robert, Kyprianou, Andreas E.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {homogeneous fragmentation; scale functions; additive martingales; multiplicative martingales; largest fragment},
language = {eng},
number = {2},
pages = {476-491},
publisher = {Gauthier-Villars},
title = {Survival of homogeneous fragmentation processes with killing},
url = {http://eudml.org/doc/272090},
volume = {50},
year = {2014},
}
TY - JOUR
AU - Knobloch, Robert
AU - Kyprianou, Andreas E.
TI - Survival of homogeneous fragmentation processes with killing
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 2
SP - 476
EP - 491
AB - We consider a homogeneous fragmentation process with killing at an exponential barrier. With the help of two families of martingales we analyse the decay of the largest fragment for parameter values that allow for survival. In this respect the present paper is also concerned with the probability of extinction of the killed process.
LA - eng
KW - homogeneous fragmentation; scale functions; additive martingales; multiplicative martingales; largest fragment
UR - http://eudml.org/doc/272090
ER -
References
top- [1] J. Bérard and J.-B. Gouéré. Brunet–Derrida behavior of branching-selection particle systems on the line. Comm. Math. Phys.298 (2010) 323–342. Zbl1247.60124MR2669438
- [2] J. Berestycki, N. Berestycki and J. Schweinsberg. The genealogy of branching Brownian motion with absorption. Ann. Probab. To appear. Zbl1304.60088MR3077519
- [3] J. Berestycki, S. C. Harris and A. E. Kyprianou. Travelling waves and homogeneous fragmenation. Ann. Appl. Probab.21 (2011) 1749–1794. Zbl1245.60069MR2884050
- [4] J. Bertoin. Lévy Processes. Cambridge Univ. Press, Cambridge, 1996. Zbl0938.60005MR1406564
- [5] J. Bertoin. Asymptotic behaviour of fragmentation processes. J. Europ. Math. Soc.5 (2003) 395–416. Zbl1042.60042MR2017852
- [6] J. Bertoin. Random Fragmentation and Coagulation Processes. Cambridge Univ. Press, Cambridge, 2006. Zbl1107.60002MR2253162
- [7] J. Bertoin and A. Rouault. Additive martingales and probability tilting for homogeneous fragmentations. Preprint, 2003.
- [8] J. Bertoin and A. Rouault. Discritization methods for homogeneous fragmentations. J. London Math. Soc.72 (2005) 91–109. Zbl1077.60053MR2145730
- [9] L. Breiman. Probability, 2nd edition. SIAM, Philadelphia, PA, 1992. Zbl0753.60001MR1163370
- [10] B. Derrida and D. Simon. The survival probability of a branching random walk in presence of an absorbing wall. Europhys. Lett. EPL 78 (2007) Art. 60006. Zbl1244.82071MR2366713
- [11] B. Derrida and D. Simon. Quasi-stationary regime of a branching random walk in presence of an absorbing wall. J. Stat. Phys.131 (2008) 203–233. Zbl1144.82321MR2386578
- [12] R. Durrett. Probability: Theory and Examples. Duxbury Press, N. Scituate, 1991. Zbl1202.60002MR2722836
- [13] N. Gantert, Y. Hu and Z. Shi. Asymptotics for the survival probability in a supercritical branching random walk. Ann. Inst. H. Poincaré Probab. Statist.47 (2011) 111–129. Zbl1210.60093MR2779399
- [14] J. W. Harris and S. C. Harris. Survival probabilities for branching Brownian motion with absorption. Elect. Comm. Probab.12 (2007) 81–92. Zbl1132.60059MR2300218
- [15] J. Harris, S. C. Harris and A. E. Kyprianou. Further probabilistic analysis of the Fisher–Kolmogorov–Petrovskii–Piscounov equation: One sided travelling waves. Ann. Inst. H. Poincaré Probab. Statist.42 (2006) 125–145. Zbl1093.60059MR2196975
- [16] S. C. Harris, R. Knobloch and A. E. Kyprianou. Strong law of large numbers for fragmentation processes. Ann. Inst. H. Poincaré Probab. Statist.46 (2010) 119–134. Zbl1195.60046MR2641773
- [17] R. Knobloch. Asymptotic properties of fragmentation processes. Ph.D. thesis, Univ. Bath, 2011.
- [18] R. Knobloch. One-sided FKPP travelling waves in the context of homogeneous fragmentation processes. Preprint, 2012. Available at arXiv:1204.0758.
- [19] A. E. Kyprianou. Introductory Lectures on Fluctuations of Lévy Processes with Applications. Springer, Berlin, 2006. Zbl06176054
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.