Unconditionally stable mid-point time integration in elastic-plastic dynamics
Alberto Corigliano; Umberto Perego
- Volume: 1, Issue: 4, page 367-376
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topCorigliano, Alberto, and Perego, Umberto. "Unconditionally stable mid-point time integration in elastic-plastic dynamics." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 1.4 (1990): 367-376. <http://eudml.org/doc/244074>.
@article{Corigliano1990,
abstract = {The dynamic analysis of elastoplastic systems discretized by finite elements is dealt with. The material behaviour is described by a rather general internal variable model. The unknown fields are modelled in terms of suitable variables, generalized in Prager's sense. Time integrations are carried out by means of a generalized mid-point rule. The resulting nonlinear equations expressing dynamic equilibrium of the finite step problem are solved by means of a Newton-Raphson iterative scheme. The unconditional stability of the adopted integration method is proved according to two nonlinear stability},
author = {Corigliano, Alberto, Perego, Umberto},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Dynamics; Time integration; Elastoplasticity; Stability; Newton-Raphson iterative scheme},
language = {eng},
month = {12},
number = {4},
pages = {367-376},
publisher = {Accademia Nazionale dei Lincei},
title = {Unconditionally stable mid-point time integration in elastic-plastic dynamics},
url = {http://eudml.org/doc/244074},
volume = {1},
year = {1990},
}
TY - JOUR
AU - Corigliano, Alberto
AU - Perego, Umberto
TI - Unconditionally stable mid-point time integration in elastic-plastic dynamics
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1990/12//
PB - Accademia Nazionale dei Lincei
VL - 1
IS - 4
SP - 367
EP - 376
AB - The dynamic analysis of elastoplastic systems discretized by finite elements is dealt with. The material behaviour is described by a rather general internal variable model. The unknown fields are modelled in terms of suitable variables, generalized in Prager's sense. Time integrations are carried out by means of a generalized mid-point rule. The resulting nonlinear equations expressing dynamic equilibrium of the finite step problem are solved by means of a Newton-Raphson iterative scheme. The unconditional stability of the adopted integration method is proved according to two nonlinear stability
LA - eng
KW - Dynamics; Time integration; Elastoplasticity; Stability; Newton-Raphson iterative scheme
UR - http://eudml.org/doc/244074
ER -
References
top- HALPHEN, B. - NGUYEN, Q. S., Sur le matériaux standards généralizés. J. de Mécanique, 14, 1975, 39-63. Zbl0308.73017MR416177
- LEMAITRE, J. - CHABOCHE, J. L., Mécanique des matériaux solides. Dunod, Paris1985.
- CORRADI, L., On compatible finite element models for elastic plastic analysis. Meccanica, 13, 1978, 133-150. Zbl0417.73073
- CORRADI, L., A displacement formulation for the finite element elastic-plastic problem. Meccanica, 18, 1983, 77-91. Zbl0519.73072
- COMI, C. - MAIER, G. - PEREGO, U., Generalized variables finite element modelling and extremum theorems in stepwise holonomic elastoplasticity with internal variables. 1990, to appear. Zbl0761.73107MR1162380DOI10.1016/0045-7825(92)90133-5
- HUGHES, T. J. R., Stability, convergence and growth and decay of energy of the average acceleration method in nonlinear structural dynamics. Computer and Structures, 6, 1976, 313-324. Zbl0351.73102MR455775
- HUGHES, T. J. R. - CAUGHEY, T. K. - LIU, W. K., Finite element methods for nonlinear elastodynamics which conserve energy. ASME J. of App. Mech., 45, 1978, 366-370. Zbl0392.73075
- BELYTSCHKO, T. - SCHOEBERLE, D. F., On the unconditional stability of an implicit algorithm for non-linear structural dynamics. ASME J. of App. Mech., 17, 1975, 865-869.
- HUGHES, T. J. R., A note on the stability of Newmark's algorithm in nonlinear structural dynamics. Int. J. for Num. Meth. in Eng., 11, 1977, 383-386. Zbl0363.73079
- SIMO, J. C. - GOVINDJEE, S., Nonlinear B-stability and symmetry preserving return mapping algorithms for plasticity and viscoplasticity. 1990, to appear. Zbl0825.73959MR1087203DOI10.1002/nme.1620310109
- SIMO, J. C. - WONG, K. K., Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy. Int. J. for Num. Meth. in Eng., 1990, to appear. Zbl0825.73960
- NGUYEN, Q. S., On the elastic plastic initial boundary value problem and its numerical integration. Int. J. for Num. Meth. in Eng., 11, 1977, 817-823. Zbl0366.73034MR446041
- COMI, C. - CORIGLIANO, A. - MAIER, G., Extremum properties of finite step solutions in elastoplasticity with nonlinear mixed hardening. Int. J. of Solids and Structures, 1990, to appear. Zbl0734.73024MR1085612DOI10.1016/0020-7683(91)90094-V
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.