A propagation theorem for a class of microfunctions

Andrea D'Agnolo; Giuseppe Zampieri

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1990)

  • Volume: 1, Issue: 1, page 53-58
  • ISSN: 1120-6330

Abstract

top
Let A be a closed set of M R n , whose conormai cones x + y x * A , x A , have locally empty intersection. We first show in §1 that dist x , A , x M A is a C 1 function. We then represent the n microfunctions of C A | X , X C n , using cohomology groups of O X of degree 1. By the results of § 1-3, we are able to prove in §4 that the sections of C A | X π ˙ - 1 x 0 , x 0 A , satisfy the principle of the analytic continuation in the complex integral manifolds of H ϕ i C i = 1 , , m , ϕ i being a base for the linear hull of γ x 0 * A in T x 0 * M ; in particular we get Γ A × M T * M X C A | X A × M T ˙ * M X = 0 . When A is a half space with C ω -boundary, all of the above results werealready proved by Kataoka. Finally for a E X -module M E X -module M E X -module M E X -module M E X -module M E X -module M M -module M E X -module M E X -module M E X -module M we show that H om E X M , C A | X p = 0 , when at least one conormal θ γ ˙ x 0 * A is non-characteristic for M .

How to cite

top

D'Agnolo, Andrea, and Zampieri, Giuseppe. "A propagation theorem for a class of microfunctions." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 1.1 (1990): 53-58. <http://eudml.org/doc/244098>.

@article{DAgnolo1990,
abstract = {Let \( A \) be a closed set of \( M \simeq \mathbb\{R\}^\{n\} \), whose conormai cones \( x + y^\{*\}\_\{x\}(A) \), \( x \in A \), have locally empty intersection. We first show in §1 that \( \text\{dist\}(x,A) \), \( x \in M \setminus A \) is a \( C^\{1\} \) function. We then represent the n microfunctions of \( \mathcal\{C\}\_\{A|X\} \), \( X \simeq \mathbb\{C\}^\{n\} \), using cohomology groups of \( \mathcal\{O\}\_\{X\} \) of degree 1. By the results of § 1-3, we are able to prove in §4 that the sections of \( \mathcal\{C\}\_\{A|X\}\large|\_\{\dot\{\pi\}^\{-1\}(x\_\{0\})\} \), \( x\_\{0\} \in \partial A \), satisfy the principle of the analytic continuation in the complex integral manifolds of \( \\{H(\phi\_\{i\}^\{C\})\\}\_\{i=1, \ldots, m\} \), \( \\{\phi\_\{i\}\\} \) being a base for the linear hull of \( \gamma^\{*\}\_\{x\_\{0\}\}(A) \) in \( T^\{*\}\_\{x\_\{0\}\}M \); in particular we get \( \Gamma\_\{A \times\_\{M\} T^\{*\}\_\{M\}X\}(\mathcal\{C\}\_\{A|X\})\large|\_\{\partial A \times\_\{M\} \dot\{T\}^\{*\}\_\{M\}X\} = 0 \). When \( A \)is a half space with \( C^\{\omega\} \)-boundary, all of the above results werealready proved by Kataoka. Finally for a \( \mathcal\{E\}\_\{X\} \)-module \( \mathcal\{M\} \)\( \mathcal\{E\}\_\{X\} \)-module \( \mathcal\{M\} \)\( \mathcal\{E\}\_\{X\} \)-module \( \mathcal\{M\} \)\( \mathcal\{E\}\_\{X\} \)-module \( \mathcal\{M\} \)\( \mathcal\{E\}\_\{X\} \)-module \( \mathcal\{M\} \)\( \mathcal\{E\}\_\{X\} \)-module \( \mathcal\{M\} \)\( \mathcal\{E\}\_\{X\} \)-module \( \mathcal\{M\} \)\( \mathcal\{E\}\_\{X\} \)-module \( \mathcal\{M\} \)\( \mathcal\{E\}\_\{X\} \)-module \( \mathcal\{M\} \)\( \mathcal\{E\}\_\{X\} \)-module \( \mathcal\{M\} \) we show that \( \mathcal\{H\}\mathit\{om\}\_\{\mathcal\{E\}\_\{X\}\}(\mathcal\{M\}, \mathcal\{C\}\_\{A|X\})\_\{p\} = 0 \), when at least one conormal \( \theta \in \dot\{\gamma\}^\{*\}\_\{x\_\{0\}\}(A) \) is non-characteristic for \( \mathcal\{M\} \).},
author = {D'Agnolo, Andrea, Zampieri, Giuseppe},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Partial differential equations on manifolds; Boundary value problems; Theory of functions; unique continuation theorem; microfunction; micro-analyticity; wave-front set},
language = {eng},
month = {2},
number = {1},
pages = {53-58},
publisher = {Accademia Nazionale dei Lincei},
title = {A propagation theorem for a class of microfunctions},
url = {http://eudml.org/doc/244098},
volume = {1},
year = {1990},
}

TY - JOUR
AU - D'Agnolo, Andrea
AU - Zampieri, Giuseppe
TI - A propagation theorem for a class of microfunctions
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1990/2//
PB - Accademia Nazionale dei Lincei
VL - 1
IS - 1
SP - 53
EP - 58
AB - Let \( A \) be a closed set of \( M \simeq \mathbb{R}^{n} \), whose conormai cones \( x + y^{*}_{x}(A) \), \( x \in A \), have locally empty intersection. We first show in §1 that \( \text{dist}(x,A) \), \( x \in M \setminus A \) is a \( C^{1} \) function. We then represent the n microfunctions of \( \mathcal{C}_{A|X} \), \( X \simeq \mathbb{C}^{n} \), using cohomology groups of \( \mathcal{O}_{X} \) of degree 1. By the results of § 1-3, we are able to prove in §4 that the sections of \( \mathcal{C}_{A|X}\large|_{\dot{\pi}^{-1}(x_{0})} \), \( x_{0} \in \partial A \), satisfy the principle of the analytic continuation in the complex integral manifolds of \( \{H(\phi_{i}^{C})\}_{i=1, \ldots, m} \), \( \{\phi_{i}\} \) being a base for the linear hull of \( \gamma^{*}_{x_{0}}(A) \) in \( T^{*}_{x_{0}}M \); in particular we get \( \Gamma_{A \times_{M} T^{*}_{M}X}(\mathcal{C}_{A|X})\large|_{\partial A \times_{M} \dot{T}^{*}_{M}X} = 0 \). When \( A \)is a half space with \( C^{\omega} \)-boundary, all of the above results werealready proved by Kataoka. Finally for a \( \mathcal{E}_{X} \)-module \( \mathcal{M} \)\( \mathcal{E}_{X} \)-module \( \mathcal{M} \)\( \mathcal{E}_{X} \)-module \( \mathcal{M} \)\( \mathcal{E}_{X} \)-module \( \mathcal{M} \)\( \mathcal{E}_{X} \)-module \( \mathcal{M} \)\( \mathcal{E}_{X} \)-module \( \mathcal{M} \)\( \mathcal{E}_{X} \)-module \( \mathcal{M} \)\( \mathcal{E}_{X} \)-module \( \mathcal{M} \)\( \mathcal{E}_{X} \)-module \( \mathcal{M} \)\( \mathcal{E}_{X} \)-module \( \mathcal{M} \) we show that \( \mathcal{H}\mathit{om}_{\mathcal{E}_{X}}(\mathcal{M}, \mathcal{C}_{A|X})_{p} = 0 \), when at least one conormal \( \theta \in \dot{\gamma}^{*}_{x_{0}}(A) \) is non-characteristic for \( \mathcal{M} \).
LA - eng
KW - Partial differential equations on manifolds; Boundary value problems; Theory of functions; unique continuation theorem; microfunction; micro-analyticity; wave-front set
UR - http://eudml.org/doc/244098
ER -

References

top
  1. KANEKO, A., Estimation of singular spectrum of boundary values for some semihyperbolic operators. J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 27, (2), 1980, 401-461. Zbl0445.35026MR586456
  2. KATAOKA, K., On the theory of Radon transformation of hyperfunctions. J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 28, 1981, 331-413. Zbl0576.32008MR633002
  3. KATAOKA, K., Microlocal theory of boundary value problems I and II. J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 27, 1980, 335-399, and 28, 1981, 31-56. Zbl0459.35098MR617862
  4. KASHIWARA, M. - SCHAPIRA, P., Microlocal study of sheaves. Astérisque, 128, 1985. Zbl0589.32019MR794557
  5. SATO, M. - KASHIWARA, M. - KAWAI, T., Hyperfunctions and pseudodifferential equations. Lecture Notes in Math., Springer Verlag, 287, 1973, 265-529. Zbl0277.46039MR420735
  6. SCHAPIRA, P., Front d'onde analytique au bord. Sém. E.D.P. Ecole Polytechnique Exp., 13, 1986 Zbl0638.58027MR874572

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.