On compact orbits in singular Kähler spaces

Jörg Winkelmann

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1997)

  • Volume: 8, Issue: 1, page 31-38
  • ISSN: 1120-6330

Abstract

top
For a complex solvable Lie group acting holomorphically on a Kähler manifold every closed orbit is isomorphic to a torus and any two such tori are isogenous. We prove a similar result for singular Kähler spaces.

How to cite

top

Winkelmann, Jörg. "On compact orbits in singular Kähler spaces." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 8.1 (1997): 31-38. <http://eudml.org/doc/244153>.

@article{Winkelmann1997,
abstract = {For a complex solvable Lie group acting holomorphically on a Kähler manifold every closed orbit is isomorphic to a torus and any two such tori are isogenous. We prove a similar result for singular Kähler spaces.},
author = {Winkelmann, Jörg},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Kähler manifold; Solvable group; Isogenous tori; singular Kähler space; solvable complex Lie group; Albanese variety; torus},
language = {eng},
month = {4},
number = {1},
pages = {31-38},
publisher = {Accademia Nazionale dei Lincei},
title = {On compact orbits in singular Kähler spaces},
url = {http://eudml.org/doc/244153},
volume = {8},
year = {1997},
}

TY - JOUR
AU - Winkelmann, Jörg
TI - On compact orbits in singular Kähler spaces
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1997/4//
PB - Accademia Nazionale dei Lincei
VL - 8
IS - 1
SP - 31
EP - 38
AB - For a complex solvable Lie group acting holomorphically on a Kähler manifold every closed orbit is isomorphic to a torus and any two such tori are isogenous. We prove a similar result for singular Kähler spaces.
LA - eng
KW - Kähler manifold; Solvable group; Isogenous tori; singular Kähler space; solvable complex Lie group; Albanese variety; torus
UR - http://eudml.org/doc/244153
ER -

References

top
  1. ARTIN, M., On the solution of analytic equations. Invent. Math., 5, 1968, 277-291. Zbl0172.05301MR232018
  2. BOREL, A. - REMMERT, R., Über kompakte homogene Kählersche Mannigfaltigkeiten. Math. Ann., 145, 1962, 429-439. Zbl0111.18001MR145557
  3. FUJIKI, A., On automorphism groups of compact Kähler manifolds. Invent. Math., 44, 1978, 225- 258. Zbl0367.32004MR481142
  4. GRAUERT, H., Über modifikationen und exzeptionelle analytische Mengen. Math. Ann., 146, 1962, 331-368. Zbl0173.33004MR137127
  5. GRAUERT, H., Jetmetriken und hyperbolische Geometrie. Math. Z., 200, 1989, 149-168. Zbl0664.32020MR978291DOI10.1007/BF01230277
  6. GREEN, M. - GRIFFITHS, P., Two Applications of Algebraic Geometry to Entire Holomorphic Mapping. In: The Chern Symposium 1979. Springer, New York-Berlin1980, 41-74. Zbl0508.32010MR609557
  7. HIRONAKA, H., Bimeromorphic smoothing of a complex-analytic space. Math. Inst. Warwick Univ., England, 1971. Zbl0407.32006
  8. HUMPHRIES, J., Linear Algebraic Groups. GTM, 21. Springer, 1975. Zbl0325.20039MR396773
  9. LIEBERMAN, D., Compactness of the Chow Scheme: Applications to automorphisms and deformations of Kähler manifolds. In: Séminaire Norguet. LN, 670, 1978, 140-186. Zbl0391.32018MR521918
  10. MATSUSHIMA, Y., Fibrés holomorphes sur un tore complexe. Nagoya Math. J., 14, 1959, 1-24. Zbl0095.36702MR102613
  11. REMMERT, R., Holomorphe und meromorphe Abbildungen komplexer Räume. Math. Ann., 133, 1957, 329-370. Zbl0079.10201MR92996
  12. REMMERT, R. - VAN DE VEN, T., Zur Funktionentheorie homogener komplexer Mannigfaltigkeiten. Topology, 2, 1963, 137-157. Zbl0122.08602MR148085
  13. SNOW, D., Transformation groups of compact Kähler spaces. Arch. Math., 37, 1981, 364-371. Zbl0456.57017MR639342DOI10.1007/BF01234370
  14. SOMMESE, A. J., Holomorphic vector fields on compact Kähler manifolds. Math. Ann., 210, 1974, 75-82. Zbl0272.32008MR348148
  15. TITS, J., Espaces homogènes complexes compacts. Comm. Math. Helv., 37, 1962, 111-120. Zbl0108.36302MR154299
  16. VAROUCHAS, J., Kähler spaces and proper open morphisms. Math. Ann., 283, no. 1, 1989, 13-52. Zbl0632.53059MR973802DOI10.1007/BF01457500
  17. WANG, H., Complex parallisable manifolds. Proc. A.M.S., 5, 1954, 771-776. Zbl0056.15403MR74064

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.