On compact orbits in singular Kähler spaces
- Volume: 8, Issue: 1, page 31-38
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topWinkelmann, Jörg. "On compact orbits in singular Kähler spaces." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 8.1 (1997): 31-38. <http://eudml.org/doc/244153>.
@article{Winkelmann1997,
abstract = {For a complex solvable Lie group acting holomorphically on a Kähler manifold every closed orbit is isomorphic to a torus and any two such tori are isogenous. We prove a similar result for singular Kähler spaces.},
author = {Winkelmann, Jörg},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Kähler manifold; Solvable group; Isogenous tori; singular Kähler space; solvable complex Lie group; Albanese variety; torus},
language = {eng},
month = {4},
number = {1},
pages = {31-38},
publisher = {Accademia Nazionale dei Lincei},
title = {On compact orbits in singular Kähler spaces},
url = {http://eudml.org/doc/244153},
volume = {8},
year = {1997},
}
TY - JOUR
AU - Winkelmann, Jörg
TI - On compact orbits in singular Kähler spaces
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1997/4//
PB - Accademia Nazionale dei Lincei
VL - 8
IS - 1
SP - 31
EP - 38
AB - For a complex solvable Lie group acting holomorphically on a Kähler manifold every closed orbit is isomorphic to a torus and any two such tori are isogenous. We prove a similar result for singular Kähler spaces.
LA - eng
KW - Kähler manifold; Solvable group; Isogenous tori; singular Kähler space; solvable complex Lie group; Albanese variety; torus
UR - http://eudml.org/doc/244153
ER -
References
top- ARTIN, M., On the solution of analytic equations. Invent. Math., 5, 1968, 277-291. Zbl0172.05301MR232018
- BOREL, A. - REMMERT, R., Über kompakte homogene Kählersche Mannigfaltigkeiten. Math. Ann., 145, 1962, 429-439. Zbl0111.18001MR145557
- FUJIKI, A., On automorphism groups of compact Kähler manifolds. Invent. Math., 44, 1978, 225- 258. Zbl0367.32004MR481142
- GRAUERT, H., Über modifikationen und exzeptionelle analytische Mengen. Math. Ann., 146, 1962, 331-368. Zbl0173.33004MR137127
- GRAUERT, H., Jetmetriken und hyperbolische Geometrie. Math. Z., 200, 1989, 149-168. Zbl0664.32020MR978291DOI10.1007/BF01230277
- GREEN, M. - GRIFFITHS, P., Two Applications of Algebraic Geometry to Entire Holomorphic Mapping. In: The Chern Symposium 1979. Springer, New York-Berlin1980, 41-74. Zbl0508.32010MR609557
- HIRONAKA, H., Bimeromorphic smoothing of a complex-analytic space. Math. Inst. Warwick Univ., England, 1971. Zbl0407.32006
- HUMPHRIES, J., Linear Algebraic Groups. GTM, 21. Springer, 1975. Zbl0325.20039MR396773
- LIEBERMAN, D., Compactness of the Chow Scheme: Applications to automorphisms and deformations of Kähler manifolds. In: Séminaire Norguet. LN, 670, 1978, 140-186. Zbl0391.32018MR521918
- MATSUSHIMA, Y., Fibrés holomorphes sur un tore complexe. Nagoya Math. J., 14, 1959, 1-24. Zbl0095.36702MR102613
- REMMERT, R., Holomorphe und meromorphe Abbildungen komplexer Räume. Math. Ann., 133, 1957, 329-370. Zbl0079.10201MR92996
- REMMERT, R. - VAN DE VEN, T., Zur Funktionentheorie homogener komplexer Mannigfaltigkeiten. Topology, 2, 1963, 137-157. Zbl0122.08602MR148085
- SNOW, D., Transformation groups of compact Kähler spaces. Arch. Math., 37, 1981, 364-371. Zbl0456.57017MR639342DOI10.1007/BF01234370
- SOMMESE, A. J., Holomorphic vector fields on compact Kähler manifolds. Math. Ann., 210, 1974, 75-82. Zbl0272.32008MR348148
- TITS, J., Espaces homogènes complexes compacts. Comm. Math. Helv., 37, 1962, 111-120. Zbl0108.36302MR154299
- VAROUCHAS, J., Kähler spaces and proper open morphisms. Math. Ann., 283, no. 1, 1989, 13-52. Zbl0632.53059MR973802DOI10.1007/BF01457500
- WANG, H., Complex parallisable manifolds. Proc. A.M.S., 5, 1954, 771-776. Zbl0056.15403MR74064
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.