Some remarks on Set-theoretic Intersection Curves in P 3

Roberto Paoletti

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1996)

  • Volume: 7, Issue: 1, page 41-46
  • ISSN: 1120-6330

Abstract

top
Motivated by the notion of Seshadri-ampleness introduced in [11], we conjecture that the genus and the degree of a smooth set-theoretic intersection C P 3 should satisfy a certain inequality. The conjecture is verified for various classes of set-theoretic complete intersections.

How to cite

top

Paoletti, Roberto. "Some remarks on Set-theoretic Intersection Curves in \( \mathbb{P}^{3} \)." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 7.1 (1996): 41-46. <http://eudml.org/doc/244192>.

@article{Paoletti1996,
abstract = {Motivated by the notion of Seshadri-ampleness introduced in [11], we conjecture that the genus and the degree of a smooth set-theoretic intersection \( C \subset \mathbb\{P\}^\{3\} \) should satisfy a certain inequality. The conjecture is verified for various classes of set-theoretic complete intersections.},
author = {Paoletti, Roberto},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Set-theoretic intersection; Seshadri-ampleness; Genus; Degree; projective space curve; degree; genus; smooth connected set-theoretic complete intersection},
language = {eng},
month = {5},
number = {1},
pages = {41-46},
publisher = {Accademia Nazionale dei Lincei},
title = {Some remarks on Set-theoretic Intersection Curves in \( \mathbb\{P\}^\{3\} \)},
url = {http://eudml.org/doc/244192},
volume = {7},
year = {1996},
}

TY - JOUR
AU - Paoletti, Roberto
TI - Some remarks on Set-theoretic Intersection Curves in \( \mathbb{P}^{3} \)
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1996/5//
PB - Accademia Nazionale dei Lincei
VL - 7
IS - 1
SP - 41
EP - 46
AB - Motivated by the notion of Seshadri-ampleness introduced in [11], we conjecture that the genus and the degree of a smooth set-theoretic intersection \( C \subset \mathbb{P}^{3} \) should satisfy a certain inequality. The conjecture is verified for various classes of set-theoretic complete intersections.
LA - eng
KW - Set-theoretic intersection; Seshadri-ampleness; Genus; Degree; projective space curve; degree; genus; smooth connected set-theoretic complete intersection
UR - http://eudml.org/doc/244192
ER -

References

top
  1. BARTH, W., Kummer surfaces associated with the Mumford-Horrocks bundle. In: A. BEAUVILLE (éd.), Journées de Géométrie Algébrique d'Angers (Angers, 1979). Sijthoff and Noordhoff, Alphen aan den Rijn, 1980, 29-48. Zbl0448.14007MR605335
  2. CATANESE, F., Babbage's conjecture, contact of surfaces, symmetric determinental varieties and applications. Inv. Math., 63, 1981, 433-466. Zbl0472.14024MR620679DOI10.1007/BF01389064
  3. CILIBERTO, C., Canonical Surfaces with p g = p a = 4 and K 2 = 5 , , 10 . Duke Math. J., 48, 1981, 121-157. Zbl0468.14011MR610180
  4. FULTON, W., Intersection Theory. Springer-Verlag, 1984. Zbl0885.14002MR732620
  5. FULTON, W. - LAZARSFELD, R., Positive polynomials for ample vector bundles. Ann. Math., 118, 1983, 35-60. Zbl0537.14009MR707160DOI10.2307/2006953
  6. GOODMAN, J. E., Affine open subsets of algebraic varieties and ample divisors. Ann. Math., 89, 1969, 160-183. Zbl0159.50504MR242843
  7. HARTSHORNE, R., Complete intersections in characteristic p > 0 . Am. J. Math., 101, 1979, 380-383. Zbl0418.14027MR527998DOI10.2307/2373984
  8. JAFFE, D., Smooth curves on a cone which pass through its vertex. Manuscripta Mathematica, 73, 1991, 187-205. Zbl0779.14019MR1128687DOI10.1007/BF02567638
  9. LE BARZ, P., Formules pour les trisécantes des surfaces algébriques. L'Enseign. Math., 33, 1987, 1-66. Zbl0629.14037MR896383
  10. OKONEK, C. - SCHNEIDER, M. - SPINDLER, H., Vector bundles on complex projective spaces. Progr. in Math., vol. 56, Birkhäuser, Boston1985. Zbl0438.32016MR561910
  11. PAOLETTI, R., Seshadri positive curves in a smooth projective 3-fold. Rend. Mat. Acc. Lincei, s. 9, v. 6, 1995, 259-274. Zbl0874.14018MR1382710
  12. PESKINE, C. - SZPIRO, L., Liaison des variétés algébriques. Inv. Math., 26, 1974, 271-302. Zbl0298.14022MR364271
  13. RAO, P., On self-linked curves. Duke Math. J., 49, 1982, 251-273. Zbl0499.14014MR659940

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.