Angular limits and derivatives for holomorphic maps of infinite dimensional bounded homogeneous domains

Kazimierz Włodarczyk

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1994)

  • Volume: 5, Issue: 1, page 43-53
  • ISSN: 1120-6330

Abstract

top
An infinite dimensional extension of the Pick-Julia theorem is used to derive the conditions of Carathéodory type which guarantee the existence of angular limits and angular derivatives for holomorphic maps of infinite dimensional bounded symmetric homogeneous domains in J * -algebras and in complex Hilbert spaces. The case of operator-valued analytic maps is considered and examples are given.

How to cite

top

Włodarczyk, Kazimierz. "Angular limits and derivatives for holomorphic maps of infinite dimensional bounded homogeneous domains." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 5.1 (1994): 43-53. <http://eudml.org/doc/244214>.

@article{Włodarczyk1994,
abstract = {An infinite dimensional extension of the Pick-Julia theorem is used to derive the conditions of Carathéodory type which guarantee the existence of angular limits and angular derivatives for holomorphic maps of infinite dimensional bounded symmetric homogeneous domains in \( J^\{*\} \)-algebras and in complex Hilbert spaces. The case of operator-valued analytic maps is considered and examples are given.},
author = {Włodarczyk, Kazimierz},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Infinite dimensional bounded symmetric homogeneous domain; Holomorphic map; Operator-valued analytic map; Angular derivative; $ J^\{*\} $-algebra; infinite dimensional extension of the Pick-Julia theorem; conditions of Carathéodory type; existence of angular limits and angular derivatives for holomorphic maps; complex Hilbert spaces; operator-valued analytic maps; infinite dimensional bounded symmetric homogeneous domains in -algebras},
language = {eng},
month = {3},
number = {1},
pages = {43-53},
publisher = {Accademia Nazionale dei Lincei},
title = {Angular limits and derivatives for holomorphic maps of infinite dimensional bounded homogeneous domains},
url = {http://eudml.org/doc/244214},
volume = {5},
year = {1994},
}

TY - JOUR
AU - Włodarczyk, Kazimierz
TI - Angular limits and derivatives for holomorphic maps of infinite dimensional bounded homogeneous domains
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1994/3//
PB - Accademia Nazionale dei Lincei
VL - 5
IS - 1
SP - 43
EP - 53
AB - An infinite dimensional extension of the Pick-Julia theorem is used to derive the conditions of Carathéodory type which guarantee the existence of angular limits and angular derivatives for holomorphic maps of infinite dimensional bounded symmetric homogeneous domains in \( J^{*} \)-algebras and in complex Hilbert spaces. The case of operator-valued analytic maps is considered and examples are given.
LA - eng
KW - Infinite dimensional bounded symmetric homogeneous domain; Holomorphic map; Operator-valued analytic map; Angular derivative; $ J^{*} $-algebra; infinite dimensional extension of the Pick-Julia theorem; conditions of Carathéodory type; existence of angular limits and angular derivatives for holomorphic maps; complex Hilbert spaces; operator-valued analytic maps; infinite dimensional bounded symmetric homogeneous domains in -algebras
UR - http://eudml.org/doc/244214
ER -

References

top
  1. AHLFORS, L. V., Conformal invariants: topics in geometric function theory. McGraw-Hill, New York1973. Zbl0272.30012MR357743
  2. ANDO, T. - FAN, KY, Pick-Julia theorems for operators. Math. Z., 168, 1979, 23-34. Zbl0389.47004MR542181DOI10.1007/BF01214433
  3. BARTH, K. F. - RIPPON, P. J. - SONS, L. S., Angular limits of holomorphic and meromorphic functions. J. London Math. Soc., (2), 42, 1990, 279-291. Zbl0682.30023MR1083446DOI10.1112/jlms/s2-42.2.279
  4. BERMAN, R. D., Angular limits and infinite asymptotic values of analytic functions of slow growth. Ill. J. Math., 34, 1990, 845-858. Zbl0701.30028MR1062778
  5. CARATHÉODORY, C., Conformal representations. Cambridge Tracts in Mathematics and Mathematical Physics, Cambridge1952. Zbl0047.07905
  6. CARATHÉODORY, C., Über die Winkelderivierten von beschrankten analytischen Functionen. Sitz. Ber. Preuss. Akad., Phys.-Math., IV, 1929, 1-18. JFM55.0209.02
  7. CARATHÉODORY, C., Theory of functions. Vol. 2. Chelsea Publishing Company, New York1960. Zbl0056.06703
  8. CARTAN, E., Sur les domaines bornés homogènees de l'espace de n variables complexes. Abh. Math. Sem. Univ. Hamburg, 11, 1935, 116-162. Zbl0011.12302
  9. FAN, KY, The angular derivative of an operator-valued analytic function. Pacific J. Math., 121, 1986, 67-72. Zbl0588.47018MR815033
  10. GARDINER, S. J., Angular limits of holomorphic functions which satisfy an integrability condition. Monatsh. Math., 114, 1992, 97-106. Zbl0765.30018MR1191814DOI10.1007/BF01535575
  11. GIRELA, D., Non-tangential limits for analytic functions of slow growth in a disc. J. London Math. Soc., (2), 46, 1992, 140-148. Zbl0755.30031MR1180889DOI10.1112/jlms/s2-46.1.140
  12. GOLDBERG, J. L., Functions with positive real part in a half plane. Duke Math. J., 29, 1962, 333-339. Zbl0101.29702MR164041
  13. HARRIS, L. A., Bounded symmetric homogeneous domains in infinite dimensional spaces. Lecture Notes in Mathematics, 364, Springer-Verlag, Berlin-Heidelberg-New York1974, 13-40. Zbl0293.46049MR407330
  14. MACCLUER, B.D. - SHAPIRO, J. H., Angular derivatives and compact composition operators on the Hardy and Bergman spaces. Canadian J. Math., 38, 1986, 878-906. Zbl0608.30050MR854144DOI10.4153/CJM-1986-043-4
  15. NACHBIN, L., Topology on spaces of holomorphic mappings. Springer-Verlag, Berlin-Heidelberg-New York1969. Zbl0172.39902MR254579
  16. NEVANLINNA, R., Analytic functions. Springer-Verlag, Berlin-Heidelberg-New York1970. Zbl0199.12501MR279280
  17. POMMERENKE, CH., Univalent functions. Vandenhoeck and Ruprecht, Göttingen1975. Zbl0298.30014MR507768
  18. RUDIN, W., Function theory in the unit ball of C n . Springer-Verlag, New York-Heidelberg-Berlin1980. Zbl1139.32001MR601594
  19. SARASON, D., Angular derivatives via Hilbert space. Complex Variables Theory Appl., 10, 1988, 1-10. Zbl0635.30024MR946094
  20. WLODARCZYK, K., Hyperbolic geometry in bounded symmetric homogeneous domains of J * -algebras. Atti Sem. Mat. Fis. Univ. Modena, 39, 1991, 201-211. Zbl0744.46035MR1111769
  21. WLODARCZYK, K., Julia's lemma and Wolffs theorem for J * -algebras. Proc. Amer. Math. Soc., 99, 1987, 472-476. Zbl0621.46041MR875383DOI10.2307/2046348
  22. WLODARCZYK, K., Pick-Julia theorems for holomorphic maps in J * -algebras and Hilbert spaces. J. Math. Anal. Appl., 120, 1986, 567-571. Zbl0612.46044MR864774DOI10.1016/0022-247X(86)90179-4
  23. WLODARCZYK, K., Some properties of analytic maps of operators in J * -algebras. Monatsh. Math., 96, 1983, 325-330. Zbl0521.46046MR729044DOI10.1007/BF01471215
  24. WLODARCZYK, K., Studies of iterations of holomorphic maps in J * -algebras and complex Banach spaces. Quart. J. Math. Oxford, 37, 1986, 245-256. Zbl0595.47046MR841432DOI10.1093/qmath/37.2.245
  25. WLODARCZYK, K., The angular derivative of Fréchet-holomorphic maps in J * -algebras and complex Hilbert spaces. Proc. Kon. Nederl. Akad. Wetensch., A91, 1988, 455-468; Indag. Math., 50, 1988, 455-468. Zbl0665.46034MR976528
  26. WLODARCZYK, K., The Julia-Carathéodory theorem for distance-decreasing maps on infinite dimensional hyperbolic spaces. Rend. Mat. Acc. Lincei, s. 9, v. 4, 1993, 171-179. Zbl0817.46048MR1250495

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.