Angular limits and derivatives for holomorphic maps of infinite dimensional bounded homogeneous domains
- Volume: 5, Issue: 1, page 43-53
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topWłodarczyk, Kazimierz. "Angular limits and derivatives for holomorphic maps of infinite dimensional bounded homogeneous domains." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 5.1 (1994): 43-53. <http://eudml.org/doc/244214>.
@article{Włodarczyk1994,
abstract = {An infinite dimensional extension of the Pick-Julia theorem is used to derive the conditions of Carathéodory type which guarantee the existence of angular limits and angular derivatives for holomorphic maps of infinite dimensional bounded symmetric homogeneous domains in \( J^\{*\} \)-algebras and in complex Hilbert spaces. The case of operator-valued analytic maps is considered and examples are given.},
author = {Włodarczyk, Kazimierz},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Infinite dimensional bounded symmetric homogeneous domain; Holomorphic map; Operator-valued analytic map; Angular derivative; $ J^\{*\} $-algebra; infinite dimensional extension of the Pick-Julia theorem; conditions of Carathéodory type; existence of angular limits and angular derivatives for holomorphic maps; complex Hilbert spaces; operator-valued analytic maps; infinite dimensional bounded symmetric homogeneous domains in -algebras},
language = {eng},
month = {3},
number = {1},
pages = {43-53},
publisher = {Accademia Nazionale dei Lincei},
title = {Angular limits and derivatives for holomorphic maps of infinite dimensional bounded homogeneous domains},
url = {http://eudml.org/doc/244214},
volume = {5},
year = {1994},
}
TY - JOUR
AU - Włodarczyk, Kazimierz
TI - Angular limits and derivatives for holomorphic maps of infinite dimensional bounded homogeneous domains
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1994/3//
PB - Accademia Nazionale dei Lincei
VL - 5
IS - 1
SP - 43
EP - 53
AB - An infinite dimensional extension of the Pick-Julia theorem is used to derive the conditions of Carathéodory type which guarantee the existence of angular limits and angular derivatives for holomorphic maps of infinite dimensional bounded symmetric homogeneous domains in \( J^{*} \)-algebras and in complex Hilbert spaces. The case of operator-valued analytic maps is considered and examples are given.
LA - eng
KW - Infinite dimensional bounded symmetric homogeneous domain; Holomorphic map; Operator-valued analytic map; Angular derivative; $ J^{*} $-algebra; infinite dimensional extension of the Pick-Julia theorem; conditions of Carathéodory type; existence of angular limits and angular derivatives for holomorphic maps; complex Hilbert spaces; operator-valued analytic maps; infinite dimensional bounded symmetric homogeneous domains in -algebras
UR - http://eudml.org/doc/244214
ER -
References
top- AHLFORS, L. V., Conformal invariants: topics in geometric function theory. McGraw-Hill, New York1973. Zbl0272.30012MR357743
- ANDO, T. - FAN, KY, Pick-Julia theorems for operators. Math. Z., 168, 1979, 23-34. Zbl0389.47004MR542181DOI10.1007/BF01214433
- BARTH, K. F. - RIPPON, P. J. - SONS, L. S., Angular limits of holomorphic and meromorphic functions. J. London Math. Soc., (2), 42, 1990, 279-291. Zbl0682.30023MR1083446DOI10.1112/jlms/s2-42.2.279
- BERMAN, R. D., Angular limits and infinite asymptotic values of analytic functions of slow growth. Ill. J. Math., 34, 1990, 845-858. Zbl0701.30028MR1062778
- CARATHÉODORY, C., Conformal representations. Cambridge Tracts in Mathematics and Mathematical Physics, Cambridge1952. Zbl0047.07905
- CARATHÉODORY, C., Über die Winkelderivierten von beschrankten analytischen Functionen. Sitz. Ber. Preuss. Akad., Phys.-Math., IV, 1929, 1-18. JFM55.0209.02
- CARATHÉODORY, C., Theory of functions. Vol. 2. Chelsea Publishing Company, New York1960. Zbl0056.06703
- CARTAN, E., Sur les domaines bornés homogènees de l'espace de n variables complexes. Abh. Math. Sem. Univ. Hamburg, 11, 1935, 116-162. Zbl0011.12302
- FAN, KY, The angular derivative of an operator-valued analytic function. Pacific J. Math., 121, 1986, 67-72. Zbl0588.47018MR815033
- GARDINER, S. J., Angular limits of holomorphic functions which satisfy an integrability condition. Monatsh. Math., 114, 1992, 97-106. Zbl0765.30018MR1191814DOI10.1007/BF01535575
- GIRELA, D., Non-tangential limits for analytic functions of slow growth in a disc. J. London Math. Soc., (2), 46, 1992, 140-148. Zbl0755.30031MR1180889DOI10.1112/jlms/s2-46.1.140
- GOLDBERG, J. L., Functions with positive real part in a half plane. Duke Math. J., 29, 1962, 333-339. Zbl0101.29702MR164041
- HARRIS, L. A., Bounded symmetric homogeneous domains in infinite dimensional spaces. Lecture Notes in Mathematics, 364, Springer-Verlag, Berlin-Heidelberg-New York1974, 13-40. Zbl0293.46049MR407330
- MACCLUER, B.D. - SHAPIRO, J. H., Angular derivatives and compact composition operators on the Hardy and Bergman spaces. Canadian J. Math., 38, 1986, 878-906. Zbl0608.30050MR854144DOI10.4153/CJM-1986-043-4
- NACHBIN, L., Topology on spaces of holomorphic mappings. Springer-Verlag, Berlin-Heidelberg-New York1969. Zbl0172.39902MR254579
- NEVANLINNA, R., Analytic functions. Springer-Verlag, Berlin-Heidelberg-New York1970. Zbl0199.12501MR279280
- POMMERENKE, CH., Univalent functions. Vandenhoeck and Ruprecht, Göttingen1975. Zbl0298.30014MR507768
- RUDIN, W., Function theory in the unit ball of . Springer-Verlag, New York-Heidelberg-Berlin1980. Zbl1139.32001MR601594
- SARASON, D., Angular derivatives via Hilbert space. Complex Variables Theory Appl., 10, 1988, 1-10. Zbl0635.30024MR946094
- WLODARCZYK, K., Hyperbolic geometry in bounded symmetric homogeneous domains of -algebras. Atti Sem. Mat. Fis. Univ. Modena, 39, 1991, 201-211. Zbl0744.46035MR1111769
- WLODARCZYK, K., Julia's lemma and Wolffs theorem for -algebras. Proc. Amer. Math. Soc., 99, 1987, 472-476. Zbl0621.46041MR875383DOI10.2307/2046348
- WLODARCZYK, K., Pick-Julia theorems for holomorphic maps in -algebras and Hilbert spaces. J. Math. Anal. Appl., 120, 1986, 567-571. Zbl0612.46044MR864774DOI10.1016/0022-247X(86)90179-4
- WLODARCZYK, K., Some properties of analytic maps of operators in -algebras. Monatsh. Math., 96, 1983, 325-330. Zbl0521.46046MR729044DOI10.1007/BF01471215
- WLODARCZYK, K., Studies of iterations of holomorphic maps in -algebras and complex Banach spaces. Quart. J. Math. Oxford, 37, 1986, 245-256. Zbl0595.47046MR841432DOI10.1093/qmath/37.2.245
- WLODARCZYK, K., The angular derivative of Fréchet-holomorphic maps in -algebras and complex Hilbert spaces. Proc. Kon. Nederl. Akad. Wetensch., A91, 1988, 455-468; Indag. Math., 50, 1988, 455-468. Zbl0665.46034MR976528
- WLODARCZYK, K., The Julia-Carathéodory theorem for distance-decreasing maps on infinite dimensional hyperbolic spaces. Rend. Mat. Acc. Lincei, s. 9, v. 4, 1993, 171-179. Zbl0817.46048MR1250495
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.