The existence of angular derivatives of holomorphic maps of Siegel domains in a generalization of C * -algebras

Kazimierz Włodarczyk

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1994)

  • Volume: 5, Issue: 4, page 309-328
  • ISSN: 1120-6330

Abstract

top
The aim of this paper is to start a systematic investigation of the existence of angular limits and angular derivatives of holomorphic maps of infinite dimensional Siegel domains in J * -algebras. Since J * -algebras are natural generalizations of C * -algebras, B * -algebras, J C * -algebras, ternary algebras and complex Hilbert spaces, various significant results follow. Examples are given.

How to cite

top

Włodarczyk, Kazimierz. "The existence of angular derivatives of holomorphic maps of Siegel domains in a generalization of \( C^{*} \)-algebras." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 5.4 (1994): 309-328. <http://eudml.org/doc/244282>.

@article{Włodarczyk1994,
abstract = {The aim of this paper is to start a systematic investigation of the existence of angular limits and angular derivatives of holomorphic maps of infinite dimensional Siegel domains in \( J^\{*\} \)-algebras. Since \( J^\{*\} \)-algebras are natural generalizations of \( C^\{*\} \)-algebras, \( B^\{*\} \)-algebras, \( JC^\{*\} \)-algebras, ternary algebras and complex Hilbert spaces, various significant results follow. Examples are given.},
author = {Włodarczyk, Kazimierz},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Holomorphic maps; Angular limits; Angular derivatives; Infinite dimensional Siegel domains; Generalizations of C *-algebras; -algebra; infinite dimensional angular sets; existence of angular limits and angular derivatives for holomorphic maps; results of the Pick- Julia type; Siegel domains},
language = {eng},
month = {12},
number = {4},
pages = {309-328},
publisher = {Accademia Nazionale dei Lincei},
title = {The existence of angular derivatives of holomorphic maps of Siegel domains in a generalization of \( C^\{*\} \)-algebras},
url = {http://eudml.org/doc/244282},
volume = {5},
year = {1994},
}

TY - JOUR
AU - Włodarczyk, Kazimierz
TI - The existence of angular derivatives of holomorphic maps of Siegel domains in a generalization of \( C^{*} \)-algebras
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1994/12//
PB - Accademia Nazionale dei Lincei
VL - 5
IS - 4
SP - 309
EP - 328
AB - The aim of this paper is to start a systematic investigation of the existence of angular limits and angular derivatives of holomorphic maps of infinite dimensional Siegel domains in \( J^{*} \)-algebras. Since \( J^{*} \)-algebras are natural generalizations of \( C^{*} \)-algebras, \( B^{*} \)-algebras, \( JC^{*} \)-algebras, ternary algebras and complex Hilbert spaces, various significant results follow. Examples are given.
LA - eng
KW - Holomorphic maps; Angular limits; Angular derivatives; Infinite dimensional Siegel domains; Generalizations of C *-algebras; -algebra; infinite dimensional angular sets; existence of angular limits and angular derivatives for holomorphic maps; results of the Pick- Julia type; Siegel domains
UR - http://eudml.org/doc/244282
ER -

References

top
  1. ANDO, T. - FAN, KY, Pick-Julia theorems for operators. Math. Z., 168, 1979, 23-34. Zbl0389.47004MR542181DOI10.1007/BF01214433
  2. BURCKEL, R. B., An Introduction to Classical Complex Analysis. Vol. I, Academic Press, New York-San Francisco1979. Zbl0434.30002MR555733
  3. CARATHÉODORY, C., Über die Winkelderivierten von beschränkten analytischen Functionen. Sitz. Ber. Preuss. Akad., Phys.-Math., IV, 1929, 1-18. JFM55.0209.02
  4. CARATHÉODORY, C., Conformal Representations. Cambridge Tracts in Mathematics and Mathematical Physics, Cambridge1952. Zbl0047.07905
  5. CARATHÉODORY, C., Theory of Functions. Vol. 2, Chelsea Publishing Company, New York1960. Zbl0056.06703
  6. CARTAN, E., Sur les domaines bornés homogènes de l'espace de n variables complexes. Abh. Math. Sem. Univ. Hamburg, 11, 1935, 116-162. Zbl0011.12302
  7. COWEN, C. C. - POMMERENKE, CH., Inequalities for the angular derivative of an analytic function in the unit disk. J. London Math. Soc., (2), 26, 1982, 271-289. Zbl0476.30001MR675170DOI10.1112/jlms/s2-26.2.271
  8. DINEEN, S., The Schwarz Lemma. Oxford Mathematical Monographs, Clarendon Press, Oxford1989. Zbl0708.46046MR1033739
  9. EKE, B. G., On the angular derivative of regular functions. Math. Scand., 21, 1967, 122-127. Zbl0167.06301MR241617
  10. FAN, KY, Iteration of analytic functions of operators. Math. Z., 179, 1982, 293-298. Zbl0465.47017MR649033DOI10.1007/BF01215332
  11. FAN, KY, The angular derivative of an operator-valued analytic function. Pacific J. Math., 121, 1986, 67-72. Zbl0588.47018MR815033
  12. FRANZONI, T. - VESENTINI, E., Holomorphic Maps and Invariant Distances. North-HollandMathematics Studies40, Amsterdam-New York-Oxford1980. Zbl0447.46040MR563329
  13. GOLDBERG, J. L., Functions with positive real part in a half plane. Duke Math. J., 29, 1962, 333-339. Zbl0101.29702MR164041
  14. HARRIS, L. A., Banach algebras with involution and Möbius transformations. J. Functional Anal., 11, 1972, 1-16. Zbl0239.46058MR352994
  15. HARRIS, L. A., Bounded Symmetric Homogeneous Domains in Infinite Dimensional Spaces. Lecture Notes in Mathematics, 364, Springer-Verlag, Berlin-Heidelberg-New York1974, 13-40. Zbl0293.46049MR407330
  16. HARRIS, L. A., Operator Siegel domains. Proc. Roy. Soc. Edinburgh, 79 A, 1977, 137-156. Zbl0376.32027MR484600
  17. HARRIS, L. A., A generalization of C * -algebras. Proc. London Math. Soc., (3), 41, 1981, 331- 361. Zbl0476.46054MR607306DOI10.1112/plms/s3-42.2.331
  18. HARRIS, L. A., Linear fractional transformations of circular domains in operator spaces. Indiana Univ. Math. J., 41, 1992, 125-147. Zbl0760.47018MR1160906DOI10.1512/iumj.1992.41.41008
  19. HUA, L.-K., On the theory of automorphic functions of a matrix variable I - Geometrical Basis. Amer. J. Math., 66, 1944, 470-488. Zbl0063.02919MR11133
  20. HUA, L.-K., On the theory of automorphic functions of a matrix variable II - The classification of hypercircles under the symplectic group. Amer. J. Math., 66, 1944, 531-563. Zbl0063.02920MR11134
  21. KAUP, W., Algebraic characterization of symmetric complex Banach manifolds. Math. Ann., 228, 1977, 39-64. Zbl0335.58005MR454091
  22. KAUP, W., Bounded symmetric domains in complex Hilbert spaces. Symp. Math., Istituto Nazionale di Alta Matematica Francesco Severi, 26, 1982, 11-21. Zbl0482.32012MR663020
  23. KIN, Y.-L., Inequalities for fixed points of holomorphic functions. Bull. London Math. Soc., 22, 1990, 446-452. Zbl0725.30012MR1082013DOI10.1112/blms/22.5.446
  24. KOECHER, M., An Elementary Approach to Bounded Symmetric Domain. Rice Univ., Houston, Texas1969. Zbl0217.10901MR261032
  25. KORANYI, A. - WOLFF, J., Generalized Cayley transformations of bounded symmetric domains. Amer. J. Math., 87, 1965, 899-939. Zbl0137.27403MR192002
  26. KORANYI, A. - WOLFF, J., Realization of hermitian symmetric spaces as generalized half-planes. Ann. of Math., 81, 1965, 265-288. Zbl0137.27402MR174787
  27. LANDAU, E. - VALIRON, G., A deduction from Schwarzs lemma. J. London Math. Soc., 4, 1929, 162-163. MR1575036JFM55.0769.02
  28. LOOS, O., Jordan triple systems, R -spaces and bounded symmetric domains. Bull. Amer. Math. Soc., 77, 1971, 558-561. Zbl0228.32012MR281846
  29. LOOS, O., Bounded symmetric domains and Jordan pairs. Univ. of California, Irvine1977. 
  30. MACCLUER, B. D. - SHAPIRO, J. H., Angular derivatives and compact composition operators on the Hardy and Bergman spaces. Canadian J. Math., 38, 1986, 878-906. Zbl0608.30050MR854144DOI10.4153/CJM-1986-043-4
  31. NACHBIN, L., Topology on Spaces of Holomorphic Mappings. Springer-Verlag, Berlin-Heidelberg-New York1969. Zbl0172.39902MR254579
  32. NEVANLINNA, R., Analytic Functions. Springer-Verlag, Berlin-Heidelberg-New York1969. Zbl0199.12501MR279280
  33. PJATETSKIJ-SHAPIRO, I. I., Automorphic Functions and the Geometry of Classical Domains. Gordon-Breach, New York1969. Zbl0196.09901MR252690
  34. POMMERENKE, CH., Univalent Functions. Vandehoeck and Ruprecht, Göttingen1975. Zbl0298.30014MR507768
  35. RUDIN, W., Function Theory in the Unit Ball of C n . Springer-Verlag, New York-Heidelberg-Berlin1980. Zbl1139.32001MR601594
  36. SARASON, D., Angular derivatives via Hilbert space. Complex Variables Theory Appl., 10, 1988, 1-10. Zbl0635.30024MR946094
  37. SHAPIRO, J. H., Composition Operators and Classical Function Theory. Springer-Verlag, New York1993. Zbl0791.30033MR1237406
  38. UPMEIER, H., Symmetric Banach Manifolds and Jordan C * -Algebras. North-Holland, Amsterdam, Math. Studies, vol. 104, 1985. Zbl0561.46032MR776786
  39. UPMEIER, H., Jordan algebras in analysis, operator theory, and quantum mechanics. Regional Conference Series in Math., 67, Amer. Math. Soc., Providence, RI, 1987. Zbl0608.17013MR874756
  40. VALIRON, G., Fonctions analytiques. Presses Univ. de France, Paris1954. Zbl0055.06702MR61658
  41. VESENTINI, E., Su un teorema di Wolff e Denjoy. Rend. Sem. Mat. Fis. Milano, LIII, 1983, 17-25. Zbl0596.30038MR858531DOI10.1007/BF02924880
  42. WARSCHAWSKI, E., Remarks on the angular derivatives. Nagoya Math. J., 42, 1971, 19-32. Zbl0209.11002MR274733
  43. WŁODARCZYK, K., On holomorphic maps in Banach spaces and J * -algebras. Quart. J. Math. Oxford, (2), 36, 1985, 495-511. Zbl0595.46048MR816489DOI10.1093/qmath/36.4.495
  44. WŁODARCZYK, K., Pick-Julia theorems for holomorphic maps in J * -algebras and Hilbert spaces. J. Math. Anal. Appl., 120, 1986, 567-571. Zbl0612.46044MR864774DOI10.1016/0022-247X(86)90179-4
  45. WŁODARCZYK, K., Studies of iterations of holomorphic maps in J * -algebras and complex Hilbert spaces. Quart. J. Math. Oxford, (2), 37, 1986, 245-256. Zbl0595.47046MR841432DOI10.1093/qmath/37.2.245
  46. WŁODARCZYK, K., Julia's lemma and Wolff's theorem for J * -algebras and complex Hilbert spaces. Proc. Amer. Math. Soc., 99, 1987, 472-476. Zbl0621.46041
  47. WŁODARCZYK, K., The angular derivative of Fréchet-holomorphic maps in J * -algebras and complex Hilbert spaces. Proc. Kon. Nederl. Akad. Wetensch., A91, 1988, 455-468; Indag. Math., 50, 1988, 455-468. Zbl0665.46034MR976528
  48. WŁODARCZYK, K., Hyperbolic geometry in bounded symmetric homogeneous domains of J * -algebras. Atti Sem. Mat. Fis. Univ. Modena, 39, 1991, 201-211. Zbl0744.46035MR1111769
  49. WŁODARCZYK, K., The Julia-Carathéodory theorem for distance-decreasing maps on infinite dimensional hyperbolic spaces. Rend. Mat. Acc. Lincei., s. 9, 4, 1993, 171-179. Zbl0817.46048MR1250495
  50. WŁODARCZYK, K., Angular limits and derivatives for holomorphic maps of infinite dimensional bounded homogeneous domains. Rend. Mat. Acc. Lincei, s. 9, 5, 1994, 43-53. Zbl0802.46060MR1273892

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.