The Julia-Carathéodory theorem for distance-decreasing maps on infinite dimensional hyperbolic spaces
- Volume: 4, Issue: 3, page 171-179
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topWłodarczyk, Kazimierz. "The Julia-Carathéodory theorem for distance-decreasing maps on infinite dimensional hyperbolic spaces." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 4.3 (1993): 171-179. <http://eudml.org/doc/244109>.
@article{Włodarczyk1993,
abstract = {A classical Julia-Carathéodory theorem concerning radial limits of holomorphic maps in one dimension is extended to hyperbolic contractions of bounded symmetric domains in J*-algebras.},
author = {Włodarczyk, Kazimierz},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Infinite dimensional bounded symmetric homogeneous domains; Hyperbolic metrics; Distance-decreasing maps; Julia-Carathéodory theorem; /J*-algebras; hyperbolic metrics; distance-decreasing maps; radial limits of holomorphic maps; hyperbolic contractions of bounded symmetric domains in -algebras},
language = {eng},
month = {9},
number = {3},
pages = {171-179},
publisher = {Accademia Nazionale dei Lincei},
title = {The Julia-Carathéodory theorem for distance-decreasing maps on infinite dimensional hyperbolic spaces},
url = {http://eudml.org/doc/244109},
volume = {4},
year = {1993},
}
TY - JOUR
AU - Włodarczyk, Kazimierz
TI - The Julia-Carathéodory theorem for distance-decreasing maps on infinite dimensional hyperbolic spaces
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1993/9//
PB - Accademia Nazionale dei Lincei
VL - 4
IS - 3
SP - 171
EP - 179
AB - A classical Julia-Carathéodory theorem concerning radial limits of holomorphic maps in one dimension is extended to hyperbolic contractions of bounded symmetric domains in J*-algebras.
LA - eng
KW - Infinite dimensional bounded symmetric homogeneous domains; Hyperbolic metrics; Distance-decreasing maps; Julia-Carathéodory theorem; /J*-algebras; hyperbolic metrics; distance-decreasing maps; radial limits of holomorphic maps; hyperbolic contractions of bounded symmetric domains in -algebras
UR - http://eudml.org/doc/244109
ER -
References
top- ABATE, M., Iteration theory, compactly divergent sequences and commuting holomorphic maps. Ann. Scuola Norm. Sup. Pisa, 18, 1991, 167-191. Zbl0760.32014MR1129300
- ANDO, T. - FAN, K., Pick-Julia theorems for operators. Math. Z., 168, 1979, 23-34. Zbl0389.47004MR542181DOI10.1007/BF01214433
- BEARDON, A. F., Iteration of contractions and analytic maps. J. London Math. Soc, 41, 1990, 141-150. Zbl0662.30017MR1063551DOI10.1112/jlms/s2-41.1.141
- CARATHEODORY, C., Conformal Representations. Cambridge Tracts in Mathematics and Mathematical Physics, Cambridge1952. Zbl0047.07905MR46435
- CARTAN, E., Sur les domaines bornés homogènes de l'espace de variables complexes. Abh. Math. Sem. Univ. Hamburg, 11, 1935, 116-162. Zbl0011.12302
- CHEN, G.-N., Iteration for holomorphic maps of the open unit ball and the generalized upper half plane of . J. Math. Anal. Appl., 98, 1984, 305-313. Zbl0587.32008MR730507DOI10.1016/0022-247X(84)90249-X
- DINEEN, S., The Schwarz Lemma. Oxford Mathematical Monographs, Clarendon Press, Oxford1989. Zbl0708.46046MR1033739
- DINEEN, S. - TIMONEY, R. - VIGUE, J. P., Pseudodistances invariantes les domaines d'un espace localement convexe. Ann. Scuola Norm. Sup. Pisa, (4), 12, 1985, 515-529. Zbl0603.46052MR848840
- FAN, K., Analytic functions of an operator contraction. Math. Z., 160, 1978, 275-290. Zbl0441.30060MR482310
- FAN, K., Julia's lemma for operators. Math. Ann., 239, 1979, 241-245. Zbl0378.47004MR522782DOI10.1007/BF01351489
- FAN, K., Iteration of analytic functions of operators. Math. Z., 179, 1982, 293-298. Zbl0465.47017MR649033DOI10.1007/BF01215332
- FAN, K., The angular derivative of an operator-valued analytic function. Pacific J. Math., 121, 1986, 67-72. Zbl0588.47018MR815033
- FRANZONI, T. - VESENTINI, E., Holomorphic Maps and Invariant Distance. North Holland, Amsterdam1980. Zbl0447.46040MR563329
- HARRIS, L. A., Bounded Symmetric Homogeneous Domains in Infinite Dimensional Spaces. Lecture Notes in Mathematics, No. 364, Springer-Verlag, Berlin-Heidelberg-New York1974, 13-40. Zbl0293.46049MR407330
- HARRIS, L. A., Schwarz-Pick systems of pseudometrics for domains in normed linear spaces. In: J. A. BARROSO (ed.), Advances in Holomorphy. North Holland, Amsterdam1979, 345-406. Zbl0409.46053MR520667
- HARRIS, L. A., Linear fractional transformations of circular domains in operator spaces. Indiana Univ. Math. J., 41, 1992, 125-147, Zbl0760.47018MR1160906DOI10.1512/iumj.1992.41.41008
- HERVÉ, M., Analyticity in Infinite Dimensional Spaces. Walter de Gruyter, Berlin-New York1989. Zbl0666.58008MR986066DOI10.1515/9783110856941
- KUBOTA, Y., Iteration of holomorphic maps of the unit ball into itself. Proc. Amer. Math. Soc., 88, 1983, 476-480. Zbl0518.32016MR699417DOI10.2307/2044997
- MAC CLUER, B. D., Iterates of holomorphic self maps of the unit hall in . Michigan Math. J., 30, 1983, 97-106. Zbl0528.32019MR694933DOI10.1307/mmj/1029002792
- VESENTINI, E., Invariant distances and invariant differential metric in locally convex spaces. In: Spectral Theory. Polish Scientific Publishers, Warsaw1982, 493-512. Zbl0505.32020MR738313
- VESENTINI, E., Su un teorema di Wolff e Denjoy. Rend. Sem. Mat. Fis. Milano, LIII, 1983, 17-25. Zbl0596.30038MR858531DOI10.1007/BF02924880
- WLODARCZYK, K., Some properties of analytic maps of operators in J*-algebras. Monatsh. Math., 96, 1983, 325-330. Zbl0521.46046MR729044DOI10.1007/BF01471215
- WLODARCZYK, K., Studies of iterations of holomorphic maps in J*-algebras and complex Hilbert spaces. Quart. J. Math. Oxford, 37, 1986, 245-256. Zbl0595.47046MR841432DOI10.1093/qmath/37.2.245
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.