The Julia-Carathéodory theorem for distance-decreasing maps on infinite dimensional hyperbolic spaces

Kazimierz Włodarczyk

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1993)

  • Volume: 4, Issue: 3, page 171-179
  • ISSN: 1120-6330

Abstract

top
A classical Julia-Carathéodory theorem concerning radial limits of holomorphic maps in one dimension is extended to hyperbolic contractions of bounded symmetric domains in J*-algebras.

How to cite

top

Włodarczyk, Kazimierz. "The Julia-Carathéodory theorem for distance-decreasing maps on infinite dimensional hyperbolic spaces." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 4.3 (1993): 171-179. <http://eudml.org/doc/244109>.

@article{Włodarczyk1993,
abstract = {A classical Julia-Carathéodory theorem concerning radial limits of holomorphic maps in one dimension is extended to hyperbolic contractions of bounded symmetric domains in J*-algebras.},
author = {Włodarczyk, Kazimierz},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Infinite dimensional bounded symmetric homogeneous domains; Hyperbolic metrics; Distance-decreasing maps; Julia-Carathéodory theorem; /J*-algebras; hyperbolic metrics; distance-decreasing maps; radial limits of holomorphic maps; hyperbolic contractions of bounded symmetric domains in -algebras},
language = {eng},
month = {9},
number = {3},
pages = {171-179},
publisher = {Accademia Nazionale dei Lincei},
title = {The Julia-Carathéodory theorem for distance-decreasing maps on infinite dimensional hyperbolic spaces},
url = {http://eudml.org/doc/244109},
volume = {4},
year = {1993},
}

TY - JOUR
AU - Włodarczyk, Kazimierz
TI - The Julia-Carathéodory theorem for distance-decreasing maps on infinite dimensional hyperbolic spaces
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1993/9//
PB - Accademia Nazionale dei Lincei
VL - 4
IS - 3
SP - 171
EP - 179
AB - A classical Julia-Carathéodory theorem concerning radial limits of holomorphic maps in one dimension is extended to hyperbolic contractions of bounded symmetric domains in J*-algebras.
LA - eng
KW - Infinite dimensional bounded symmetric homogeneous domains; Hyperbolic metrics; Distance-decreasing maps; Julia-Carathéodory theorem; /J*-algebras; hyperbolic metrics; distance-decreasing maps; radial limits of holomorphic maps; hyperbolic contractions of bounded symmetric domains in -algebras
UR - http://eudml.org/doc/244109
ER -

References

top
  1. ABATE, M., Iteration theory, compactly divergent sequences and commuting holomorphic maps. Ann. Scuola Norm. Sup. Pisa, 18, 1991, 167-191. Zbl0760.32014MR1129300
  2. ANDO, T. - FAN, K., Pick-Julia theorems for operators. Math. Z., 168, 1979, 23-34. Zbl0389.47004MR542181DOI10.1007/BF01214433
  3. BEARDON, A. F., Iteration of contractions and analytic maps. J. London Math. Soc, 41, 1990, 141-150. Zbl0662.30017MR1063551DOI10.1112/jlms/s2-41.1.141
  4. CARATHEODORY, C., Conformal Representations. Cambridge Tracts in Mathematics and Mathematical Physics, Cambridge1952. Zbl0047.07905MR46435
  5. CARTAN, E., Sur les domaines bornés homogènes de l'espace de n variables complexes. Abh. Math. Sem. Univ. Hamburg, 11, 1935, 116-162. Zbl0011.12302
  6. CHEN, G.-N., Iteration for holomorphic maps of the open unit ball and the generalized upper half plane of C n . J. Math. Anal. Appl., 98, 1984, 305-313. Zbl0587.32008MR730507DOI10.1016/0022-247X(84)90249-X
  7. DINEEN, S., The Schwarz Lemma. Oxford Mathematical Monographs, Clarendon Press, Oxford1989. Zbl0708.46046MR1033739
  8. DINEEN, S. - TIMONEY, R. - VIGUE, J. P., Pseudodistances invariantes les domaines d'un espace localement convexe. Ann. Scuola Norm. Sup. Pisa, (4), 12, 1985, 515-529. Zbl0603.46052MR848840
  9. FAN, K., Analytic functions of an operator contraction. Math. Z., 160, 1978, 275-290. Zbl0441.30060MR482310
  10. FAN, K., Julia's lemma for operators. Math. Ann., 239, 1979, 241-245. Zbl0378.47004MR522782DOI10.1007/BF01351489
  11. FAN, K., Iteration of analytic functions of operators. Math. Z., 179, 1982, 293-298. Zbl0465.47017MR649033DOI10.1007/BF01215332
  12. FAN, K., The angular derivative of an operator-valued analytic function. Pacific J. Math., 121, 1986, 67-72. Zbl0588.47018MR815033
  13. FRANZONI, T. - VESENTINI, E., Holomorphic Maps and Invariant Distance. North Holland, Amsterdam1980. Zbl0447.46040MR563329
  14. HARRIS, L. A., Bounded Symmetric Homogeneous Domains in Infinite Dimensional Spaces. Lecture Notes in Mathematics, No. 364, Springer-Verlag, Berlin-Heidelberg-New York1974, 13-40. Zbl0293.46049MR407330
  15. HARRIS, L. A., Schwarz-Pick systems of pseudometrics for domains in normed linear spaces. In: J. A. BARROSO (ed.), Advances in Holomorphy. North Holland, Amsterdam1979, 345-406. Zbl0409.46053MR520667
  16. HARRIS, L. A., Linear fractional transformations of circular domains in operator spaces. Indiana Univ. Math. J., 41, 1992, 125-147, Zbl0760.47018MR1160906DOI10.1512/iumj.1992.41.41008
  17. HERVÉ, M., Analyticity in Infinite Dimensional Spaces. Walter de Gruyter, Berlin-New York1989. Zbl0666.58008MR986066DOI10.1515/9783110856941
  18. KUBOTA, Y., Iteration of holomorphic maps of the unit ball into itself. Proc. Amer. Math. Soc., 88, 1983, 476-480. Zbl0518.32016MR699417DOI10.2307/2044997
  19. MAC CLUER, B. D., Iterates of holomorphic self maps of the unit hall in C N . Michigan Math. J., 30, 1983, 97-106. Zbl0528.32019MR694933DOI10.1307/mmj/1029002792
  20. VESENTINI, E., Invariant distances and invariant differential metric in locally convex spaces. In: Spectral Theory. Polish Scientific Publishers, Warsaw1982, 493-512. Zbl0505.32020MR738313
  21. VESENTINI, E., Su un teorema di Wolff e Denjoy. Rend. Sem. Mat. Fis. Milano, LIII, 1983, 17-25. Zbl0596.30038MR858531DOI10.1007/BF02924880
  22. WLODARCZYK, K., Some properties of analytic maps of operators in J*-algebras. Monatsh. Math., 96, 1983, 325-330. Zbl0521.46046MR729044DOI10.1007/BF01471215
  23. WLODARCZYK, K., Studies of iterations of holomorphic maps in J*-algebras and complex Hilbert spaces. Quart. J. Math. Oxford, 37, 1986, 245-256. Zbl0595.47046MR841432DOI10.1093/qmath/37.2.245

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.