A uniqueness theorem for the approximable solutions of the stationary Navier-Stokes equations
- Volume: 3, Issue: 4, page 261-269
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topProuse, Giovanni. "A uniqueness theorem for the approximable solutions of the stationary Navier-Stokes equations." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 3.4 (1992): 261-269. <http://eudml.org/doc/244215>.
@article{Prouse1992,
abstract = {It is proved that there can exist at most one solution of the homogeneous Dirichlet problem for the stationary Navier-Stokes equations in 3-dimensional space which is approximable by a given consistent and regular approximation scheme.},
author = {Prouse, Giovanni},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Fluid dynamics; Approximation schemes; Weak solutions; weak solutions; homogeneous Dirichlet problem; approximation scheme},
language = {eng},
month = {12},
number = {4},
pages = {261-269},
publisher = {Accademia Nazionale dei Lincei},
title = {A uniqueness theorem for the approximable solutions of the stationary Navier-Stokes equations},
url = {http://eudml.org/doc/244215},
volume = {3},
year = {1992},
}
TY - JOUR
AU - Prouse, Giovanni
TI - A uniqueness theorem for the approximable solutions of the stationary Navier-Stokes equations
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1992/12//
PB - Accademia Nazionale dei Lincei
VL - 3
IS - 4
SP - 261
EP - 269
AB - It is proved that there can exist at most one solution of the homogeneous Dirichlet problem for the stationary Navier-Stokes equations in 3-dimensional space which is approximable by a given consistent and regular approximation scheme.
LA - eng
KW - Fluid dynamics; Approximation schemes; Weak solutions; weak solutions; homogeneous Dirichlet problem; approximation scheme
UR - http://eudml.org/doc/244215
ER -
References
top- TEMAM, R., Navier-Stokes equations. North Holland, 1977. Zbl0383.35057MR769654
- LADYZHENSKAYA, O. A., The mathematical theory of viscous, incompressible fluids. Gordon and Breach, 1969. Zbl0121.42701MR254401
- BREZZI, F. - RAPPAZ, J. - RAVIART, P. A., Finite dimensional approximation of nonlinear problems. Num. Math., 36, 1980, 1-25. Zbl0488.65021MR595803DOI10.1007/BF01395985
- LADYZHENSKAYA, O. A., On modifications of the Navier-Stokes equations for large velocity gradients. Sem. Inst. Steklov, Leningrad1968 (in russian). Zbl0202.37301
- LIONS, J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, 1969. Zbl0189.40603MR259693
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.