A uniqueness theorem for the approximable solutions of the stationary Navier-Stokes equations

Giovanni Prouse

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1992)

  • Volume: 3, Issue: 4, page 261-269
  • ISSN: 1120-6330

Abstract

top
It is proved that there can exist at most one solution of the homogeneous Dirichlet problem for the stationary Navier-Stokes equations in 3-dimensional space which is approximable by a given consistent and regular approximation scheme.

How to cite

top

Prouse, Giovanni. "A uniqueness theorem for the approximable solutions of the stationary Navier-Stokes equations." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 3.4 (1992): 261-269. <http://eudml.org/doc/244215>.

@article{Prouse1992,
abstract = {It is proved that there can exist at most one solution of the homogeneous Dirichlet problem for the stationary Navier-Stokes equations in 3-dimensional space which is approximable by a given consistent and regular approximation scheme.},
author = {Prouse, Giovanni},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Fluid dynamics; Approximation schemes; Weak solutions; weak solutions; homogeneous Dirichlet problem; approximation scheme},
language = {eng},
month = {12},
number = {4},
pages = {261-269},
publisher = {Accademia Nazionale dei Lincei},
title = {A uniqueness theorem for the approximable solutions of the stationary Navier-Stokes equations},
url = {http://eudml.org/doc/244215},
volume = {3},
year = {1992},
}

TY - JOUR
AU - Prouse, Giovanni
TI - A uniqueness theorem for the approximable solutions of the stationary Navier-Stokes equations
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1992/12//
PB - Accademia Nazionale dei Lincei
VL - 3
IS - 4
SP - 261
EP - 269
AB - It is proved that there can exist at most one solution of the homogeneous Dirichlet problem for the stationary Navier-Stokes equations in 3-dimensional space which is approximable by a given consistent and regular approximation scheme.
LA - eng
KW - Fluid dynamics; Approximation schemes; Weak solutions; weak solutions; homogeneous Dirichlet problem; approximation scheme
UR - http://eudml.org/doc/244215
ER -

References

top
  1. TEMAM, R., Navier-Stokes equations. North Holland, 1977. Zbl0383.35057MR769654
  2. LADYZHENSKAYA, O. A., The mathematical theory of viscous, incompressible fluids. Gordon and Breach, 1969. Zbl0121.42701MR254401
  3. BREZZI, F. - RAPPAZ, J. - RAVIART, P. A., Finite dimensional approximation of nonlinear problems. Num. Math., 36, 1980, 1-25. Zbl0488.65021MR595803DOI10.1007/BF01395985
  4. LADYZHENSKAYA, O. A., On modifications of the Navier-Stokes equations for large velocity gradients. Sem. Inst. Steklov, Leningrad1968 (in russian). Zbl0202.37301
  5. LIONS, J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, 1969. Zbl0189.40603MR259693

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.