Comparison theorems between different notions of motion by mean curvature
Giovanni Bellettini; Maurizio Paolini
- Volume: 6, Issue: 1, page 45-54
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topBellettini, Giovanni, and Paolini, Maurizio. "Teoremi di confronto tra diverse nozioni di movimento secondo la curvatura media." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 6.1 (1995): 45-54. <http://eudml.org/doc/244244>.
@article{Bellettini1995,
abstract = {In questa Nota presentiamo alcuni teoremi di confronto tra il movimento secondo la curvatura media ottenuto con il metodo delle minime barriere di De Giorgi e i movimenti definiti con i metodi di Evans-Spruck, Chen-Giga-Goto, Giga-Goto-Ishii-Sato.},
author = {Bellettini, Giovanni, Paolini, Maurizio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Nonlinear partial differential equations of parabolic type; Mean curvature flow; Viscosity solutions; Barriers; mean curvature flows; viscosity solutions; barriers method},
language = {ita},
month = {3},
number = {1},
pages = {45-54},
publisher = {Accademia Nazionale dei Lincei},
title = {Teoremi di confronto tra diverse nozioni di movimento secondo la curvatura media},
url = {http://eudml.org/doc/244244},
volume = {6},
year = {1995},
}
TY - JOUR
AU - Bellettini, Giovanni
AU - Paolini, Maurizio
TI - Teoremi di confronto tra diverse nozioni di movimento secondo la curvatura media
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1995/3//
PB - Accademia Nazionale dei Lincei
VL - 6
IS - 1
SP - 45
EP - 54
AB - In questa Nota presentiamo alcuni teoremi di confronto tra il movimento secondo la curvatura media ottenuto con il metodo delle minime barriere di De Giorgi e i movimenti definiti con i metodi di Evans-Spruck, Chen-Giga-Goto, Giga-Goto-Ishii-Sato.
LA - ita
KW - Nonlinear partial differential equations of parabolic type; Mean curvature flow; Viscosity solutions; Barriers; mean curvature flows; viscosity solutions; barriers method
UR - http://eudml.org/doc/244244
ER -
References
top- ALMGREN, F. - TAYLOR, J. E. - WANG, L., Curvature-driven flows: a variational approach. SIAM J. Control Optim., 31, 1993, 387-437. Zbl0783.35002MR1205983DOI10.1137/0331020
- AMBROSIO, L. - SONER, H.-M., A level set approach to the evolution of surfaces of any codimension. Preprint Scuola Normale Superiore di Pisa, Ottobre 1994.
- BARLES, G. - SONER, H.-M. - SOUGANIDIS, P. E., Front propagation and phase field theory. SIAM J. Control Optim., 31, 1993, 439-469. Zbl0785.35049MR1205984DOI10.1137/0331021
- BELLETTINI, G. - PAOLINI, M., Two examples of fattening for the curvature flow with a driving force. Rend. Mat. Acc. Lincei, s. 9, v. 5, 1994, 229-236. Zbl0826.35051MR1298266
- BELLETTINI, G. - PAOLINI, M., Some comparison results between different notions of motion by mean curvature. Rendiconti Accademia Nazionale delle Scienze detta dei XL, Memorie di Matematica, in corso di stampa.
- BRAKKE, K. A., The Motion of a Surface by its Mean Curvature. Princeton University Press, Princeton1978. Zbl0386.53047MR485012
- BRONSARD, L. - KOHN, R. V., Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics. J. Differential Equations, 90, 1991, 211-237. Zbl0735.35072MR1101239DOI10.1016/0022-0396(91)90147-2
- CHEN, Y. G. - GIGA, Y. - GOTO, S., Uniqueness and existence of viscosity solutions of generalized mean curvature flow equation. J. Differential Geom., 33, 1991, 749-786. Zbl0696.35087MR1100211
- CRANDALL, M. G. - ISHII, H. - LIONS, P.-L., User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.), 27, 1992, 1-67. Zbl0755.35015MR1118699DOI10.1090/S0273-0979-1992-00266-5
- CRANDALL, M. G. - LIONS, P.-L., Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc., 227, 1983, 1-42. Zbl0599.35024MR690039DOI10.2307/1999343
- DE GIORGI, E., Some conjectures on flow by mean curvature. In: M. L. BENEVENTO - T. BRUNO - C. SBORDONE (eds.), Methods of Real Analysis and Partial Differential Equations. Liguori, Napoli1990. Zbl0840.35042
- DE GIORGI, E., Congetture sui limiti delle soluzioni di alcune equazioni paraboliche quasi lineari. In: Nonlinear Analysis. A Tribute in Honour of G. Prodi. S.N.S. Quaderni, Pisa1991, 173-187. Zbl0840.35012
- DE GIORGI, E., New problems on minimizing movements. In: J.-L. LIONS - C. BAIOCCHI (eds.), Boundary Value Problems for Partial Differential Equations and Applications. 29Masson, Paris1993. Zbl0851.35052MR1260440
- DE GIORGI, E., Barriere, frontiere, e movimenti di varietà. Conferenza tenuta al Dipartimento di Matematica dell'Università di Pavia, 18 marzo 1994.
- DE MOTTONI, P. - SCHATZMAN, M., Geometrical evolution of developped interfaces. Trans. Amer. Math. Soc., in corso di stampa. Zbl0797.35077
- EVANS, L. C. - SONER, H.-M. - SOUGANIDIS, P. E., Phase transitions and generalized motion by mean curvature. Comm. Pure Appl. Math., 45, 1992, 1097-1123. Zbl0801.35045MR1177477DOI10.1002/cpa.3160450903
- EVANS, L. C. - SPRUCK, J., Motion of level sets by mean curvature. I. J. Differential Geom., 33, 1991, 635-681. Zbl0726.53029MR1100206
- EVANS, L. C. - SPRUCK, J., Motion of level sets by mean curvature. II. Trans. Amer. Math. Soc., 330, 1992, 321-332. Zbl0776.53005MR1068927DOI10.2307/2154167
- EVANS, L. C. - SPRUCK, J., Motion of level sets by mean curvature. III. J. Geom. An., 2, 1992, 121-150. Zbl0768.53003MR1151756DOI10.1007/BF02921385
- GAGE, M., Curve shortening makes curves circular. Invent. Math., 76, 1984, 357-364. Zbl0542.53004MR742856DOI10.1007/BF01388602
- GAGE, M. - HAMILTON, R., The heat equations shrinking convex plane curves. J. Differential Geom., 23, 1986, 69-96. Zbl0621.53001MR840401
- GIGA, Y. - GOTO, S., Motion of hypersurfaces and geometric equations. J. Math. Soc. Japan, 44, 1992, 99-111. Zbl0739.53005MR1139660DOI10.2969/jmsj/04410099
- GIGA, Y. - GOTO, S. - ISHII, H., Global existence of weak solutions for interface equations coupled with diffusion equations. SIAM J. Math. Anal., 23, 1992, 821-835. Zbl0754.35061MR1166559DOI10.1137/0523043
- GIGA, Y. - GOTO, S. - ISHII, H. - SATO, M. H., Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains. Indiana Univ. Math. J., 40, 1991, 443-470. Zbl0836.35009MR1119185DOI10.1512/iumj.1991.40.40023
- GRAYSON, M. A., The heat equation shrinks embedded plane curves to round points. J. Differential Geom., 26, 1987, 285-314. Zbl0667.53001MR906392
- GRAYSON, M. A., Shortening embedded curves. Ann. of Math., 129, 1989, 71-111. Zbl0686.53036MR979601DOI10.2307/1971486
- HUISKEN, G., Flow by mean curvature of convex surfaces into spheres. J. Differential Geom., 20, 1984, 237-266. Zbl0556.53001MR772132
- ILMANEN, T., The level-set flow on a manifold. In: Proceedings of Symposia in Pure Mathematics. Amer. Math. Soc., 54, Part I, 1993, 193-204. Zbl0827.53014MR1216585
- ILMANEN, T., Generalized flow of sets by mean curvature on a manifold. Indiana Univ. Math. J., 41, 3, 1992, 671-705. Zbl0759.53035MR1189906DOI10.1512/iumj.1992.41.41036
- ILMANEN, T., Convergence of the Allen-Cahn equation to Brakkes motion by mean curvature. J. Differential Geom., 38, 1993, 417-461. Zbl0784.53035MR1237490
- ILMANEN, T., Elliptic Regularization and Partial Regularity for Motion by Mean Curvature. Memoirs of the Amer. Math. Soc., 250, 1994, 1-90. Zbl0798.35066MR1196160
- ISHII, H., On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDE's. Comm. Pure Appl. Math., 42, 1989, 15-45. Zbl0645.35025MR973743DOI10.1002/cpa.3160420103
- JENSEN, R., The maximum principle for viscosity solutions of second-order fully nonlinear partial differential equations. Arch. Rational Mech. Anal., 101, 1988, 1-27. Zbl0708.35019MR920674DOI10.1007/BF00281780
- LIONS, P.-L., Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations, I. Comm. Partial Differential Equations, 8, 1983, 1101-1134. Zbl0716.49022MR709164DOI10.1080/03605308308820297
- MODICA, L. - MORTOLA, S., Un esempio di -convergenza. Boll. Un. Mat. Ital., B (5), 14, 1977, 285-299. Zbl0356.49008MR445362
- OSHER, S. - SETHIAN, J. A., Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys., 79, 1988, 12-49. Zbl0659.65132MR965860DOI10.1016/0021-9991(88)90002-2
- SONER, H.-M., Motion of a set by the curvature of its boundary. J. Differential Equations, 101, 1993, 313-372. Zbl0769.35070MR1204331DOI10.1006/jdeq.1993.1015
- SONER, H.-M., Ginzburg-Landau equation and motion by mean curvature, I: convergence. Research report n. 93-NA-026, August 1993, Carnegie Mellon University. Zbl0935.35060
- SONER, H.-M. - SOUGANIDIS, P. E., Singularities and uniqueness of cylindrically symmetric surfaces moving by mean curvature. Comm. Partial Differential Equations, 18, 1993, 859-894. Zbl0804.53006MR1218522DOI10.1080/03605309308820954
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.