Comparison theorems between different notions of motion by mean curvature

Giovanni Bellettini; Maurizio Paolini

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1995)

  • Volume: 6, Issue: 1, page 45-54
  • ISSN: 1120-6330

Abstract

top
In this Note we state some comparison theorems between De Giorgi's definition of motion by mean curvature using the barriers method and the evolutions defined with the methods of Evans-Spruck, Chen-Giga-Goto, Giga-Goto-Ishii-Sato.

How to cite

top

Bellettini, Giovanni, and Paolini, Maurizio. "Teoremi di confronto tra diverse nozioni di movimento secondo la curvatura media." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 6.1 (1995): 45-54. <http://eudml.org/doc/244244>.

@article{Bellettini1995,
abstract = {In questa Nota presentiamo alcuni teoremi di confronto tra il movimento secondo la curvatura media ottenuto con il metodo delle minime barriere di De Giorgi e i movimenti definiti con i metodi di Evans-Spruck, Chen-Giga-Goto, Giga-Goto-Ishii-Sato.},
author = {Bellettini, Giovanni, Paolini, Maurizio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Nonlinear partial differential equations of parabolic type; Mean curvature flow; Viscosity solutions; Barriers; mean curvature flows; viscosity solutions; barriers method},
language = {ita},
month = {3},
number = {1},
pages = {45-54},
publisher = {Accademia Nazionale dei Lincei},
title = {Teoremi di confronto tra diverse nozioni di movimento secondo la curvatura media},
url = {http://eudml.org/doc/244244},
volume = {6},
year = {1995},
}

TY - JOUR
AU - Bellettini, Giovanni
AU - Paolini, Maurizio
TI - Teoremi di confronto tra diverse nozioni di movimento secondo la curvatura media
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1995/3//
PB - Accademia Nazionale dei Lincei
VL - 6
IS - 1
SP - 45
EP - 54
AB - In questa Nota presentiamo alcuni teoremi di confronto tra il movimento secondo la curvatura media ottenuto con il metodo delle minime barriere di De Giorgi e i movimenti definiti con i metodi di Evans-Spruck, Chen-Giga-Goto, Giga-Goto-Ishii-Sato.
LA - ita
KW - Nonlinear partial differential equations of parabolic type; Mean curvature flow; Viscosity solutions; Barriers; mean curvature flows; viscosity solutions; barriers method
UR - http://eudml.org/doc/244244
ER -

References

top
  1. ALMGREN, F. - TAYLOR, J. E. - WANG, L., Curvature-driven flows: a variational approach. SIAM J. Control Optim., 31, 1993, 387-437. Zbl0783.35002MR1205983DOI10.1137/0331020
  2. AMBROSIO, L. - SONER, H.-M., A level set approach to the evolution of surfaces of any codimension. Preprint Scuola Normale Superiore di Pisa, Ottobre 1994. 
  3. BARLES, G. - SONER, H.-M. - SOUGANIDIS, P. E., Front propagation and phase field theory. SIAM J. Control Optim., 31, 1993, 439-469. Zbl0785.35049MR1205984DOI10.1137/0331021
  4. BELLETTINI, G. - PAOLINI, M., Two examples of fattening for the curvature flow with a driving force. Rend. Mat. Acc. Lincei, s. 9, v. 5, 1994, 229-236. Zbl0826.35051MR1298266
  5. BELLETTINI, G. - PAOLINI, M., Some comparison results between different notions of motion by mean curvature. Rendiconti Accademia Nazionale delle Scienze detta dei XL, Memorie di Matematica, in corso di stampa. 
  6. BRAKKE, K. A., The Motion of a Surface by its Mean Curvature. Princeton University Press, Princeton1978. Zbl0386.53047MR485012
  7. BRONSARD, L. - KOHN, R. V., Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics. J. Differential Equations, 90, 1991, 211-237. Zbl0735.35072MR1101239DOI10.1016/0022-0396(91)90147-2
  8. CHEN, Y. G. - GIGA, Y. - GOTO, S., Uniqueness and existence of viscosity solutions of generalized mean curvature flow equation. J. Differential Geom., 33, 1991, 749-786. Zbl0696.35087MR1100211
  9. CRANDALL, M. G. - ISHII, H. - LIONS, P.-L., User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.), 27, 1992, 1-67. Zbl0755.35015MR1118699DOI10.1090/S0273-0979-1992-00266-5
  10. CRANDALL, M. G. - LIONS, P.-L., Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc., 227, 1983, 1-42. Zbl0599.35024MR690039DOI10.2307/1999343
  11. DE GIORGI, E., Some conjectures on flow by mean curvature. In: M. L. BENEVENTO - T. BRUNO - C. SBORDONE (eds.), Methods of Real Analysis and Partial Differential Equations. Liguori, Napoli1990. Zbl0840.35042
  12. DE GIORGI, E., Congetture sui limiti delle soluzioni di alcune equazioni paraboliche quasi lineari. In: Nonlinear Analysis. A Tribute in Honour of G. Prodi. S.N.S. Quaderni, Pisa1991, 173-187. Zbl0840.35012
  13. DE GIORGI, E., New problems on minimizing movements. In: J.-L. LIONS - C. BAIOCCHI (eds.), Boundary Value Problems for Partial Differential Equations and Applications. 29Masson, Paris1993. Zbl0851.35052MR1260440
  14. DE GIORGI, E., Barriere, frontiere, e movimenti di varietà. Conferenza tenuta al Dipartimento di Matematica dell'Università di Pavia, 18 marzo 1994. 
  15. DE MOTTONI, P. - SCHATZMAN, M., Geometrical evolution of developped interfaces. Trans. Amer. Math. Soc., in corso di stampa. Zbl0797.35077
  16. EVANS, L. C. - SONER, H.-M. - SOUGANIDIS, P. E., Phase transitions and generalized motion by mean curvature. Comm. Pure Appl. Math., 45, 1992, 1097-1123. Zbl0801.35045MR1177477DOI10.1002/cpa.3160450903
  17. EVANS, L. C. - SPRUCK, J., Motion of level sets by mean curvature. I. J. Differential Geom., 33, 1991, 635-681. Zbl0726.53029MR1100206
  18. EVANS, L. C. - SPRUCK, J., Motion of level sets by mean curvature. II. Trans. Amer. Math. Soc., 330, 1992, 321-332. Zbl0776.53005MR1068927DOI10.2307/2154167
  19. EVANS, L. C. - SPRUCK, J., Motion of level sets by mean curvature. III. J. Geom. An., 2, 1992, 121-150. Zbl0768.53003MR1151756DOI10.1007/BF02921385
  20. GAGE, M., Curve shortening makes curves circular. Invent. Math., 76, 1984, 357-364. Zbl0542.53004MR742856DOI10.1007/BF01388602
  21. GAGE, M. - HAMILTON, R., The heat equations shrinking convex plane curves. J. Differential Geom., 23, 1986, 69-96. Zbl0621.53001MR840401
  22. GIGA, Y. - GOTO, S., Motion of hypersurfaces and geometric equations. J. Math. Soc. Japan, 44, 1992, 99-111. Zbl0739.53005MR1139660DOI10.2969/jmsj/04410099
  23. GIGA, Y. - GOTO, S. - ISHII, H., Global existence of weak solutions for interface equations coupled with diffusion equations. SIAM J. Math. Anal., 23, 1992, 821-835. Zbl0754.35061MR1166559DOI10.1137/0523043
  24. GIGA, Y. - GOTO, S. - ISHII, H. - SATO, M. H., Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains. Indiana Univ. Math. J., 40, 1991, 443-470. Zbl0836.35009MR1119185DOI10.1512/iumj.1991.40.40023
  25. GRAYSON, M. A., The heat equation shrinks embedded plane curves to round points. J. Differential Geom., 26, 1987, 285-314. Zbl0667.53001MR906392
  26. GRAYSON, M. A., Shortening embedded curves. Ann. of Math., 129, 1989, 71-111. Zbl0686.53036MR979601DOI10.2307/1971486
  27. HUISKEN, G., Flow by mean curvature of convex surfaces into spheres. J. Differential Geom., 20, 1984, 237-266. Zbl0556.53001MR772132
  28. ILMANEN, T., The level-set flow on a manifold. In: Proceedings of Symposia in Pure Mathematics. Amer. Math. Soc., 54, Part I, 1993, 193-204. Zbl0827.53014MR1216585
  29. ILMANEN, T., Generalized flow of sets by mean curvature on a manifold. Indiana Univ. Math. J., 41, 3, 1992, 671-705. Zbl0759.53035MR1189906DOI10.1512/iumj.1992.41.41036
  30. ILMANEN, T., Convergence of the Allen-Cahn equation to Brakkes motion by mean curvature. J. Differential Geom., 38, 1993, 417-461. Zbl0784.53035MR1237490
  31. ILMANEN, T., Elliptic Regularization and Partial Regularity for Motion by Mean Curvature. Memoirs of the Amer. Math. Soc., 250, 1994, 1-90. Zbl0798.35066MR1196160
  32. ISHII, H., On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDE's. Comm. Pure Appl. Math., 42, 1989, 15-45. Zbl0645.35025MR973743DOI10.1002/cpa.3160420103
  33. JENSEN, R., The maximum principle for viscosity solutions of second-order fully nonlinear partial differential equations. Arch. Rational Mech. Anal., 101, 1988, 1-27. Zbl0708.35019MR920674DOI10.1007/BF00281780
  34. LIONS, P.-L., Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations, I. Comm. Partial Differential Equations, 8, 1983, 1101-1134. Zbl0716.49022MR709164DOI10.1080/03605308308820297
  35. MODICA, L. - MORTOLA, S., Un esempio di Γ -convergenza. Boll. Un. Mat. Ital., B (5), 14, 1977, 285-299. Zbl0356.49008MR445362
  36. OSHER, S. - SETHIAN, J. A., Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys., 79, 1988, 12-49. Zbl0659.65132MR965860DOI10.1016/0021-9991(88)90002-2
  37. SONER, H.-M., Motion of a set by the curvature of its boundary. J. Differential Equations, 101, 1993, 313-372. Zbl0769.35070MR1204331DOI10.1006/jdeq.1993.1015
  38. SONER, H.-M., Ginzburg-Landau equation and motion by mean curvature, I: convergence. Research report n. 93-NA-026, August 1993, Carnegie Mellon University. Zbl0935.35060
  39. SONER, H.-M. - SOUGANIDIS, P. E., Singularities and uniqueness of cylindrically symmetric surfaces moving by mean curvature. Comm. Partial Differential Equations, 18, 1993, 859-894. Zbl0804.53006MR1218522DOI10.1080/03605309308820954

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.