Some perturbation results for non-linear problems

Carlo Carminati

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1993)

  • Volume: 4, Issue: 4, page 243-250
  • ISSN: 1120-6330

Abstract

top
We discuss the existence of closed geodesic on a Riemannian manifold and the existence of periodic solution of second order Hamiltonian systems.

How to cite

top

Carminati, Carlo. "Some perturbation results for non-linear problems." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 4.4 (1993): 243-250. <http://eudml.org/doc/244265>.

@article{Carminati1993,
abstract = {We discuss the existence of closed geodesic on a Riemannian manifold and the existence of periodic solution of second order Hamiltonian systems.},
author = {Carminati, Carlo},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Critical point theory; Closed geodesies; Second order Hamiltonian systems; periodic solutions; geodesics},
language = {eng},
month = {12},
number = {4},
pages = {243-250},
publisher = {Accademia Nazionale dei Lincei},
title = {Some perturbation results for non-linear problems},
url = {http://eudml.org/doc/244265},
volume = {4},
year = {1993},
}

TY - JOUR
AU - Carminati, Carlo
TI - Some perturbation results for non-linear problems
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1993/12//
PB - Accademia Nazionale dei Lincei
VL - 4
IS - 4
SP - 243
EP - 250
AB - We discuss the existence of closed geodesic on a Riemannian manifold and the existence of periodic solution of second order Hamiltonian systems.
LA - eng
KW - Critical point theory; Closed geodesies; Second order Hamiltonian systems; periodic solutions; geodesics
UR - http://eudml.org/doc/244265
ER -

References

top
  1. ALBER, S. I., On periodicity problems in the calculus of variations in the large. Amer. Math. Soc. Transl., (2), 14, 1960. Zbl0094.08202MR113234
  2. AMBROSETTI, A., Critical points and non-linear variational problems. Supplément Bull. Soc. Math, de France, n. 49, 120, 1992. Zbl0766.49006
  3. AMBROSETTI, A. - BENCI, V. - LONG, Y., A note on the existence of multiple brake orbits. J.N.A.-T.M.A., to appear. Zbl0811.70015
  4. AMBROSETTI, A. - COTI ZELATI, V. - EKELAND, I., Symmetry breaking in Hamiltonian systems. J. Diff. Equat., 67, 1987, 165-184. Zbl0606.58043MR879691DOI10.1016/0022-0396(87)90144-6
  5. BENCI, V. - GIANNONI, F., A New Proof of the Existence of a Brake Orbit. Advanced Topics in the Theory of Dynamical Systems, Academic Press, New York1990. Zbl0674.34034MR996075
  6. EKELAND, I. - LASRY, J. M., On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface. Ann. of Math., 112, 1980, 283-319. Zbl0449.70014MR592293DOI10.2307/1971148
  7. KLINGENBERG, W., Lectures on Closed Geodesics. Springer, 1978. Zbl0397.58018MR478069
  8. SCHWARTZ, J. T., Nonlinear functional Analysis. Gordon & Breach, New York1969. Zbl0203.14501MR433481
  9. STRUWE, M., Variational Methods. Springer, 1990. Zbl0746.49010MR1078018
  10. SZULKIN, A., An index theory and existence of multiple brake orbits for star-shaped hamiltonian systems. Math. Ann., 283, 1989, 241-255. Zbl0642.58030MR980596DOI10.1007/BF01446433

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.