Levi's forms of higher codimensional submanifolds

Andrea D'Agnolo; Giuseppe Zampieri

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1991)

  • Volume: 2, Issue: 1, page 29-33
  • ISSN: 1120-6330

Abstract

top
Let X C n , let M be a C 2 hypersurface of X , S be a C 2 submanifold of M . Denote by L M the Levi form of M at z 0 S . In a previous paper [3] two numbers s ± S , p , p T ˙ S * X z 0 are defined; for S = M they are the numbers of positive and negative eigenvalues for L M . For S M , p S × M T ˙ * S X ) , we show here that s ± S , p are still the numbers of positive and negative eigenvalues for L M when restricted to T z 0 C S . Applications to the concentration in degree for microfunctions at the boundary are given.

How to cite

top

D'Agnolo, Andrea, and Zampieri, Giuseppe. "Levi's forms of higher codimensional submanifolds." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 2.1 (1991): 29-33. <http://eudml.org/doc/244271>.

@article{DAgnolo1991,
abstract = {Let \( X \cong C^\{n\} \), let \( M \) be a \( C^\{2\} \) hypersurface of \( X \), \( S \) be a \(C^\{2\} \) submanifold of \( M \). Denote by \( L\_\{M\}\) the Levi form of \( M \) at \( z\_\{0\} \in S \). In a previous paper [3] two numbers \( s^\{\pm\} (S,p)\), \( p \in (\dot\{T\}^\{*\}\_\{S\}X)\_\{z\_\{0\}\} \) are defined; for \( S = M \) they are the numbers of positive and negative eigenvalues for \( L\_\{M\} \). For \( S \subset M \), \( p \in S \times\_\{M\} \dot\{T\}^\{*\}\_\{S\}X) \), we show here that \( s^\{\pm\} (S, p) \) are still the numbers of positive and negative eigenvalues for \( L\_\{M\} \) when restricted to \( T^\{C\}\_\{z\_\{0\}\}S \). Applications to the concentration in degree for microfunctions at the boundary are given.},
author = {D'Agnolo, Andrea, Zampieri, Giuseppe},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Partial differential equations on manifolds; Boundary value problems; Theory of functions; PDE on manifolds; boundary value problem; Levi form of submanifold},
language = {eng},
month = {3},
number = {1},
pages = {29-33},
publisher = {Accademia Nazionale dei Lincei},
title = {Levi's forms of higher codimensional submanifolds},
url = {http://eudml.org/doc/244271},
volume = {2},
year = {1991},
}

TY - JOUR
AU - D'Agnolo, Andrea
AU - Zampieri, Giuseppe
TI - Levi's forms of higher codimensional submanifolds
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1991/3//
PB - Accademia Nazionale dei Lincei
VL - 2
IS - 1
SP - 29
EP - 33
AB - Let \( X \cong C^{n} \), let \( M \) be a \( C^{2} \) hypersurface of \( X \), \( S \) be a \(C^{2} \) submanifold of \( M \). Denote by \( L_{M}\) the Levi form of \( M \) at \( z_{0} \in S \). In a previous paper [3] two numbers \( s^{\pm} (S,p)\), \( p \in (\dot{T}^{*}_{S}X)_{z_{0}} \) are defined; for \( S = M \) they are the numbers of positive and negative eigenvalues for \( L_{M} \). For \( S \subset M \), \( p \in S \times_{M} \dot{T}^{*}_{S}X) \), we show here that \( s^{\pm} (S, p) \) are still the numbers of positive and negative eigenvalues for \( L_{M} \) when restricted to \( T^{C}_{z_{0}}S \). Applications to the concentration in degree for microfunctions at the boundary are given.
LA - eng
KW - Partial differential equations on manifolds; Boundary value problems; Theory of functions; PDE on manifolds; boundary value problem; Levi form of submanifold
UR - http://eudml.org/doc/244271
ER -

References

top
  1. D'AGNOLO, A. - ZAMPIERI, G., A vanishing theorem at the boundary for a class of systems with simple characteristics. To appear. 
  2. KASHIWARA, M. - SCHAPIRA, P., Microlocal study of sheaves. Astérisque, 128, 1985. Zbl0589.32019MR794557
  3. KASHIWARA, M. - SCHAPIRA, P., A vanishing theorem for a class of systems with simple characteristics. Invent. Math., 82, 1985, 579-592. Zbl0626.58028MR811552DOI10.1007/BF01388871
  4. SCHAPIRA, P., Condition de positivité dans une variété symplectique complexe. Applications à l'étude des microfonctions. Ann. Sci. Ec. Norm. Sup., 14, 1981, 121-139. Zbl0473.58022MR618733

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.