Semigroups and generators on convex domains with the hyperbolic metric
- Volume: 8, Issue: 4, page 231-250
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topReich, Simeon, and Shoikhet, David. "Semigroups and generators on convex domains with the hyperbolic metric." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 8.4 (1997): 231-250. <http://eudml.org/doc/244272>.
@article{Reich1997,
abstract = {Let \( D \) be domain in a complex Banach space \( X \), and let \( \rho \) be a pseudometric assigned to \( D \) by a Schwarz-Pick system. In the first section of the paper we establish several criteria for a mapping \( f : D \rightarrow X \) to be a generator of a \( \rho \)-nonexpansive semigroup on \( D \) in terms of its nonlinear resolvent. In the second section we let \( X = H \) be a complex Hilbert space, \( D = B \) the open unit ball of \( H \), and \( \rho \) the hyperbolic metric on \( B \). We introduce the notion of a \( \rho \)-monotone mapping and obtain simple characterizations of generators of semigroups of holomorphic self-mappings of \( B \).},
author = {Reich, Simeon, Shoikhet, David},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Banach space; Generator; Holomorphic mapping; Hyperbolic metric; Monotone operator; monotone operator; pseudometric; Schwarz-Pick system; generator of a -nonexpansive semigroup; nonlinear resolvent; hyperbolic metric; semigroups of holomorphic selfmappings},
language = {eng},
month = {12},
number = {4},
pages = {231-250},
publisher = {Accademia Nazionale dei Lincei},
title = {Semigroups and generators on convex domains with the hyperbolic metric},
url = {http://eudml.org/doc/244272},
volume = {8},
year = {1997},
}
TY - JOUR
AU - Reich, Simeon
AU - Shoikhet, David
TI - Semigroups and generators on convex domains with the hyperbolic metric
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1997/12//
PB - Accademia Nazionale dei Lincei
VL - 8
IS - 4
SP - 231
EP - 250
AB - Let \( D \) be domain in a complex Banach space \( X \), and let \( \rho \) be a pseudometric assigned to \( D \) by a Schwarz-Pick system. In the first section of the paper we establish several criteria for a mapping \( f : D \rightarrow X \) to be a generator of a \( \rho \)-nonexpansive semigroup on \( D \) in terms of its nonlinear resolvent. In the second section we let \( X = H \) be a complex Hilbert space, \( D = B \) the open unit ball of \( H \), and \( \rho \) the hyperbolic metric on \( B \). We introduce the notion of a \( \rho \)-monotone mapping and obtain simple characterizations of generators of semigroups of holomorphic self-mappings of \( B \).
LA - eng
KW - Banach space; Generator; Holomorphic mapping; Hyperbolic metric; Monotone operator; monotone operator; pseudometric; Schwarz-Pick system; generator of a -nonexpansive semigroup; nonlinear resolvent; hyperbolic metric; semigroups of holomorphic selfmappings
UR - http://eudml.org/doc/244272
ER -
References
top- ABATE, M., Horospheres and iterates of holomorphic maps. Math. Z., 198, 1988, 225-238. Zbl0628.32035MR939538DOI10.1007/BF01163293
- ABATE, M., The infinitesimal generators of semigroups of holomorphic maps. Ann. Mat. Pura Appl., 161, 1992, 167-180. Zbl0758.32013MR1174816DOI10.1007/BF01759637
- ABATE, M. - VIGUÉ, J. P., Common fixed points in hyperbolic Riemann surfaces and convex domains. Proc. Amer. Math. Soc., 112, 1991, 503-512. Zbl0724.32012MR1065938DOI10.2307/2048745
- AIZENBERG, L. - REICH, S. - SHOIKHET, D., One-sided estimates for the existence of null points of holomorphic mappings in Banach spaces. J. Math. Anal. Appl., 203, 1996, 38-54. Zbl0869.46025MR1412480DOI10.1006/jmaa.1996.0366
- ARAZY, J., An application of infinite dimensional holomorphy to the geometry of Banach spaces. Lecture Notes in Math., vol. 1267, Springer, Berlin1987, 122-150. Zbl0622.46012MR907690DOI10.1007/BFb0078141
- BARBU, V., Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff, Leyden1976. Zbl0328.47035MR390843
- BERKSON, E. - PORTA, H., Semigroups of analytic functions and composition operators. Michigan Math. J., 25, 1978, 101-115. Zbl0382.47017MR480965
- BRÉZIS, H., Opérateurs Maximaux Monotones. North Holland, Amsterdam1973.
- CARTAN, H., Sur les rétractions d'une variété. C. R. Acad. Sci. Paris, 303, 1986, 715-716. Zbl0609.32021MR870703
- CHERNOFF, P. - MARSDEN, J. E., On continuity and smoothness of group actions. Bull. Amer. Math. Soc., 76, 1970, 1044-1049. Zbl0202.23202MR265510
- CRANDALL, M. G. - LIGGETT, T. M., Generation of semigroups of nonlinear transformations on general Banach spaces. Amer. J. Math., 93, 1971, 265-298. Zbl0226.47038MR287357
- DINEEN, S., The Schwarz Lemma. Clarendon Press, Oxford1989. Zbl0708.46046MR1033739
- DINEEN, S. - TIMONEY, P. M. - VIGUÉ, J. P., Pseudodistances invariantes sur les domaines d'un espace localement convexe. Ann. Scuola Norm. Sup. Pisa, 12, 1985, 515-529. Zbl0603.46052MR848840
- EARLE, C. J. - HAMILTON, R. S., A fixed point theorem for holomorphic mappings. Proc. Symp. Pure Math., vol. 16, Amer. Math. Soc., Providence, RI, 1970, 61-65. Zbl0205.14702MR266009
- FRANZONI, T. - VESENTINI, E., Holomorphic Maps and Invariant Distances. North Holland, Amsterdam1980. Zbl0447.46040MR563329
- GIKHMAN, I. I. - SKOROKHOD, A. V., Theory of Random Processes. Nauka, Moscow1973. Zbl0348.60042MR341540
- GOEBEL, K. - REICH, S., Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings. Dekker, New York-Basel1984. Zbl0537.46001MR744194
- HARRIS, L. A., Schwarz-Pick systems of pseudometrics for domains in normed linear spaces. Advances in Holomorphy, North Holland, Amsterdam1979, 345-406. Zbl0409.46053MR520667
- HARRIS, T. E., The Theory of Branching Processes. Springer, Berlin1963. Zbl0117.13002MR163361
- HELMKE, U. - MOORE, B., Optimization and Dynamical Systems. Springer, London1994. Zbl0943.93001MR1299725DOI10.1007/978-1-4471-3467-1
- JACOBSON, M. E., Computation of extinction probabilities for the Bellman-Harris branching process. Math. Biosciences, 77, 1985, 173-177. Zbl0575.60085MR820410DOI10.1016/0025-5564(85)90095-1
- KHATSKEVICH, V. - REICH, S. - SHOIKHET, D., Ergodic type theorems for nonlinear semigroups with holomorphic generators. Recent Developments in Evolution Equations, PitmanResearch Notes in Math., vol. 324, 1995, 191-200. Zbl0863.47053MR1417074
- KHATSKEVICH, V. - REICH, S. - SHOIKHET, D., Global implicit function and fixed point theorems for holomorphic mappings and semigroups. Complex Variables, 28, 1996, 347-356. Zbl0843.58007MR1700203
- KRASNOSELSKI, M. A. - ZABREIKO, P. P., Geometrical Methods of Nonlinear Analysis. Springer, Berlin1984. MR736839DOI10.1007/978-3-642-69409-7
- KUCZUMOW, T. - STACHURA, A., Iterates of holomorphic and -nonexpansive mappings in convex domains in . Advances Math., 81, 1990, 90-98. Zbl0726.32016MR1051224DOI10.1016/0001-8708(90)90005-8
- MAZET, P. - VIGUÉ, J. P., Points fixes d'une application holomorphe d'un domaine borné dans lui-même. Acta Math., 166, 1991, 1-26. Zbl0733.32020MR1088981DOI10.1007/BF02398882
- RUDIN, W., The fixed point sets of some holomorphic maps. Bull. Malaysian Math. Soc., 1, 1978, 25-28. Zbl0413.32012MR506535
- SEVASTYANOV, B. A., Branching Processes. Nauka, Moscow1971. MR345229
- SHAFRIR, I., Coaccretive operators and firmly nonexpansive mappings in the Hilbert ball. Nonlinear Analysis, 18, 1992, 637-648. Zbl0752.47018MR1157564DOI10.1016/0362-546X(92)90003-W
- UPMEIER, H., Jordan Algebras in Analysis, Operator Theory and Quantum Mechanics. CBMS - NSF Regional Conference Series in Math., AMS, Providence1987. Zbl0608.17013MR874756
- VESENTINI, E., Semigroups of holomorphic isometries. Advances Math., 65, 1987, 272-306. Zbl0642.47035MR904726DOI10.1016/0001-8708(87)90025-9
- VESENTINI, E., Krein spaces and holomorphic isometries of Cartan domains. In: S. COEN (ed.), Geometry and Complex Variables. Dekker, New York1991, 409-413. Zbl0829.47029MR1151658
- VESENTINI, E., Semigroups of holomorphic isometries. In: S. COEN (ed.), Complex Potential Theory. Kluwer, Dordrecht1994, 475-548. Zbl0802.46058MR1332968
- YOSIDA, K., Functional Analysis. Springer, Berlin1968.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.