Semigroups and generators on convex domains with the hyperbolic metric

Simeon Reich; David Shoikhet

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1997)

  • Volume: 8, Issue: 4, page 231-250
  • ISSN: 1120-6330

Abstract

top
Let D be domain in a complex Banach space X , and let ρ be a pseudometric assigned to D by a Schwarz-Pick system. In the first section of the paper we establish several criteria for a mapping f : D X to be a generator of a ρ -nonexpansive semigroup on D in terms of its nonlinear resolvent. In the second section we let X = H be a complex Hilbert space, D = B the open unit ball of H , and ρ the hyperbolic metric on B . We introduce the notion of a ρ -monotone mapping and obtain simple characterizations of generators of semigroups of holomorphic self-mappings of B .

How to cite

top

Reich, Simeon, and Shoikhet, David. "Semigroups and generators on convex domains with the hyperbolic metric." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 8.4 (1997): 231-250. <http://eudml.org/doc/244272>.

@article{Reich1997,
abstract = {Let \( D \) be domain in a complex Banach space \( X \), and let \( \rho \) be a pseudometric assigned to \( D \) by a Schwarz-Pick system. In the first section of the paper we establish several criteria for a mapping \( f : D \rightarrow X \) to be a generator of a \( \rho \)-nonexpansive semigroup on \( D \) in terms of its nonlinear resolvent. In the second section we let \( X = H \) be a complex Hilbert space, \( D = B \) the open unit ball of \( H \), and \( \rho \) the hyperbolic metric on \( B \). We introduce the notion of a \( \rho \)-monotone mapping and obtain simple characterizations of generators of semigroups of holomorphic self-mappings of \( B \).},
author = {Reich, Simeon, Shoikhet, David},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Banach space; Generator; Holomorphic mapping; Hyperbolic metric; Monotone operator; monotone operator; pseudometric; Schwarz-Pick system; generator of a -nonexpansive semigroup; nonlinear resolvent; hyperbolic metric; semigroups of holomorphic selfmappings},
language = {eng},
month = {12},
number = {4},
pages = {231-250},
publisher = {Accademia Nazionale dei Lincei},
title = {Semigroups and generators on convex domains with the hyperbolic metric},
url = {http://eudml.org/doc/244272},
volume = {8},
year = {1997},
}

TY - JOUR
AU - Reich, Simeon
AU - Shoikhet, David
TI - Semigroups and generators on convex domains with the hyperbolic metric
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1997/12//
PB - Accademia Nazionale dei Lincei
VL - 8
IS - 4
SP - 231
EP - 250
AB - Let \( D \) be domain in a complex Banach space \( X \), and let \( \rho \) be a pseudometric assigned to \( D \) by a Schwarz-Pick system. In the first section of the paper we establish several criteria for a mapping \( f : D \rightarrow X \) to be a generator of a \( \rho \)-nonexpansive semigroup on \( D \) in terms of its nonlinear resolvent. In the second section we let \( X = H \) be a complex Hilbert space, \( D = B \) the open unit ball of \( H \), and \( \rho \) the hyperbolic metric on \( B \). We introduce the notion of a \( \rho \)-monotone mapping and obtain simple characterizations of generators of semigroups of holomorphic self-mappings of \( B \).
LA - eng
KW - Banach space; Generator; Holomorphic mapping; Hyperbolic metric; Monotone operator; monotone operator; pseudometric; Schwarz-Pick system; generator of a -nonexpansive semigroup; nonlinear resolvent; hyperbolic metric; semigroups of holomorphic selfmappings
UR - http://eudml.org/doc/244272
ER -

References

top
  1. ABATE, M., Horospheres and iterates of holomorphic maps. Math. Z., 198, 1988, 225-238. Zbl0628.32035MR939538DOI10.1007/BF01163293
  2. ABATE, M., The infinitesimal generators of semigroups of holomorphic maps. Ann. Mat. Pura Appl., 161, 1992, 167-180. Zbl0758.32013MR1174816DOI10.1007/BF01759637
  3. ABATE, M. - VIGUÉ, J. P., Common fixed points in hyperbolic Riemann surfaces and convex domains. Proc. Amer. Math. Soc., 112, 1991, 503-512. Zbl0724.32012MR1065938DOI10.2307/2048745
  4. AIZENBERG, L. - REICH, S. - SHOIKHET, D., One-sided estimates for the existence of null points of holomorphic mappings in Banach spaces. J. Math. Anal. Appl., 203, 1996, 38-54. Zbl0869.46025MR1412480DOI10.1006/jmaa.1996.0366
  5. ARAZY, J., An application of infinite dimensional holomorphy to the geometry of Banach spaces. Lecture Notes in Math., vol. 1267, Springer, Berlin1987, 122-150. Zbl0622.46012MR907690DOI10.1007/BFb0078141
  6. BARBU, V., Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff, Leyden1976. Zbl0328.47035MR390843
  7. BERKSON, E. - PORTA, H., Semigroups of analytic functions and composition operators. Michigan Math. J., 25, 1978, 101-115. Zbl0382.47017MR480965
  8. BRÉZIS, H., Opérateurs Maximaux Monotones. North Holland, Amsterdam1973. 
  9. CARTAN, H., Sur les rétractions d'une variété. C. R. Acad. Sci. Paris, 303, 1986, 715-716. Zbl0609.32021MR870703
  10. CHERNOFF, P. - MARSDEN, J. E., On continuity and smoothness of group actions. Bull. Amer. Math. Soc., 76, 1970, 1044-1049. Zbl0202.23202MR265510
  11. CRANDALL, M. G. - LIGGETT, T. M., Generation of semigroups of nonlinear transformations on general Banach spaces. Amer. J. Math., 93, 1971, 265-298. Zbl0226.47038MR287357
  12. DINEEN, S., The Schwarz Lemma. Clarendon Press, Oxford1989. Zbl0708.46046MR1033739
  13. DINEEN, S. - TIMONEY, P. M. - VIGUÉ, J. P., Pseudodistances invariantes sur les domaines d'un espace localement convexe. Ann. Scuola Norm. Sup. Pisa, 12, 1985, 515-529. Zbl0603.46052MR848840
  14. EARLE, C. J. - HAMILTON, R. S., A fixed point theorem for holomorphic mappings. Proc. Symp. Pure Math., vol. 16, Amer. Math. Soc., Providence, RI, 1970, 61-65. Zbl0205.14702MR266009
  15. FRANZONI, T. - VESENTINI, E., Holomorphic Maps and Invariant Distances. North Holland, Amsterdam1980. Zbl0447.46040MR563329
  16. GIKHMAN, I. I. - SKOROKHOD, A. V., Theory of Random Processes. Nauka, Moscow1973. Zbl0348.60042MR341540
  17. GOEBEL, K. - REICH, S., Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings. Dekker, New York-Basel1984. Zbl0537.46001MR744194
  18. HARRIS, L. A., Schwarz-Pick systems of pseudometrics for domains in normed linear spaces. Advances in Holomorphy, North Holland, Amsterdam1979, 345-406. Zbl0409.46053MR520667
  19. HARRIS, T. E., The Theory of Branching Processes. Springer, Berlin1963. Zbl0117.13002MR163361
  20. HELMKE, U. - MOORE, B., Optimization and Dynamical Systems. Springer, London1994. Zbl0943.93001MR1299725DOI10.1007/978-1-4471-3467-1
  21. JACOBSON, M. E., Computation of extinction probabilities for the Bellman-Harris branching process. Math. Biosciences, 77, 1985, 173-177. Zbl0575.60085MR820410DOI10.1016/0025-5564(85)90095-1
  22. KHATSKEVICH, V. - REICH, S. - SHOIKHET, D., Ergodic type theorems for nonlinear semigroups with holomorphic generators. Recent Developments in Evolution Equations, PitmanResearch Notes in Math., vol. 324, 1995, 191-200. Zbl0863.47053MR1417074
  23. KHATSKEVICH, V. - REICH, S. - SHOIKHET, D., Global implicit function and fixed point theorems for holomorphic mappings and semigroups. Complex Variables, 28, 1996, 347-356. Zbl0843.58007MR1700203
  24. KRASNOSELSKI, M. A. - ZABREIKO, P. P., Geometrical Methods of Nonlinear Analysis. Springer, Berlin1984. MR736839DOI10.1007/978-3-642-69409-7
  25. KUCZUMOW, T. - STACHURA, A., Iterates of holomorphic and k D -nonexpansive mappings in convex domains in C n . Advances Math., 81, 1990, 90-98. Zbl0726.32016MR1051224DOI10.1016/0001-8708(90)90005-8
  26. MAZET, P. - VIGUÉ, J. P., Points fixes d'une application holomorphe d'un domaine borné dans lui-même. Acta Math., 166, 1991, 1-26. Zbl0733.32020MR1088981DOI10.1007/BF02398882
  27. RUDIN, W., The fixed point sets of some holomorphic maps. Bull. Malaysian Math. Soc., 1, 1978, 25-28. Zbl0413.32012MR506535
  28. SEVASTYANOV, B. A., Branching Processes. Nauka, Moscow1971. MR345229
  29. SHAFRIR, I., Coaccretive operators and firmly nonexpansive mappings in the Hilbert ball. Nonlinear Analysis, 18, 1992, 637-648. Zbl0752.47018MR1157564DOI10.1016/0362-546X(92)90003-W
  30. UPMEIER, H., Jordan Algebras in Analysis, Operator Theory and Quantum Mechanics. CBMS - NSF Regional Conference Series in Math., AMS, Providence1987. Zbl0608.17013MR874756
  31. VESENTINI, E., Semigroups of holomorphic isometries. Advances Math., 65, 1987, 272-306. Zbl0642.47035MR904726DOI10.1016/0001-8708(87)90025-9
  32. VESENTINI, E., Krein spaces and holomorphic isometries of Cartan domains. In: S. COEN (ed.), Geometry and Complex Variables. Dekker, New York1991, 409-413. Zbl0829.47029MR1151658
  33. VESENTINI, E., Semigroups of holomorphic isometries. In: S. COEN (ed.), Complex Potential Theory. Kluwer, Dordrecht1994, 475-548. Zbl0802.46058MR1332968
  34. YOSIDA, K., Functional Analysis. Springer, Berlin1968. 

NotesEmbed ?

top

You must be logged in to post comments.