Semigroups and generators on convex domains with the hyperbolic metric

Simeon Reich; David Shoikhet

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1997)

  • Volume: 8, Issue: 4, page 231-250
  • ISSN: 1120-6330

Abstract

top
Let D be domain in a complex Banach space X , and let ρ be a pseudometric assigned to D by a Schwarz-Pick system. In the first section of the paper we establish several criteria for a mapping f : D X to be a generator of a ρ -nonexpansive semigroup on D in terms of its nonlinear resolvent. In the second section we let X = H be a complex Hilbert space, D = B the open unit ball of H , and ρ the hyperbolic metric on B . We introduce the notion of a ρ -monotone mapping and obtain simple characterizations of generators of semigroups of holomorphic self-mappings of B .

How to cite

top

Reich, Simeon, and Shoikhet, David. "Semigroups and generators on convex domains with the hyperbolic metric." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 8.4 (1997): 231-250. <http://eudml.org/doc/244272>.

@article{Reich1997,
abstract = {Let \( D \) be domain in a complex Banach space \( X \), and let \( \rho \) be a pseudometric assigned to \( D \) by a Schwarz-Pick system. In the first section of the paper we establish several criteria for a mapping \( f : D \rightarrow X \) to be a generator of a \( \rho \)-nonexpansive semigroup on \( D \) in terms of its nonlinear resolvent. In the second section we let \( X = H \) be a complex Hilbert space, \( D = B \) the open unit ball of \( H \), and \( \rho \) the hyperbolic metric on \( B \). We introduce the notion of a \( \rho \)-monotone mapping and obtain simple characterizations of generators of semigroups of holomorphic self-mappings of \( B \).},
author = {Reich, Simeon, Shoikhet, David},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Banach space; Generator; Holomorphic mapping; Hyperbolic metric; Monotone operator; monotone operator; pseudometric; Schwarz-Pick system; generator of a -nonexpansive semigroup; nonlinear resolvent; hyperbolic metric; semigroups of holomorphic selfmappings},
language = {eng},
month = {12},
number = {4},
pages = {231-250},
publisher = {Accademia Nazionale dei Lincei},
title = {Semigroups and generators on convex domains with the hyperbolic metric},
url = {http://eudml.org/doc/244272},
volume = {8},
year = {1997},
}

TY - JOUR
AU - Reich, Simeon
AU - Shoikhet, David
TI - Semigroups and generators on convex domains with the hyperbolic metric
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1997/12//
PB - Accademia Nazionale dei Lincei
VL - 8
IS - 4
SP - 231
EP - 250
AB - Let \( D \) be domain in a complex Banach space \( X \), and let \( \rho \) be a pseudometric assigned to \( D \) by a Schwarz-Pick system. In the first section of the paper we establish several criteria for a mapping \( f : D \rightarrow X \) to be a generator of a \( \rho \)-nonexpansive semigroup on \( D \) in terms of its nonlinear resolvent. In the second section we let \( X = H \) be a complex Hilbert space, \( D = B \) the open unit ball of \( H \), and \( \rho \) the hyperbolic metric on \( B \). We introduce the notion of a \( \rho \)-monotone mapping and obtain simple characterizations of generators of semigroups of holomorphic self-mappings of \( B \).
LA - eng
KW - Banach space; Generator; Holomorphic mapping; Hyperbolic metric; Monotone operator; monotone operator; pseudometric; Schwarz-Pick system; generator of a -nonexpansive semigroup; nonlinear resolvent; hyperbolic metric; semigroups of holomorphic selfmappings
UR - http://eudml.org/doc/244272
ER -

References

top
  1. ABATE, M., Horospheres and iterates of holomorphic maps. Math. Z., 198, 1988, 225-238. Zbl0628.32035MR939538DOI10.1007/BF01163293
  2. ABATE, M., The infinitesimal generators of semigroups of holomorphic maps. Ann. Mat. Pura Appl., 161, 1992, 167-180. Zbl0758.32013MR1174816DOI10.1007/BF01759637
  3. ABATE, M. - VIGUÉ, J. P., Common fixed points in hyperbolic Riemann surfaces and convex domains. Proc. Amer. Math. Soc., 112, 1991, 503-512. Zbl0724.32012MR1065938DOI10.2307/2048745
  4. AIZENBERG, L. - REICH, S. - SHOIKHET, D., One-sided estimates for the existence of null points of holomorphic mappings in Banach spaces. J. Math. Anal. Appl., 203, 1996, 38-54. Zbl0869.46025MR1412480DOI10.1006/jmaa.1996.0366
  5. ARAZY, J., An application of infinite dimensional holomorphy to the geometry of Banach spaces. Lecture Notes in Math., vol. 1267, Springer, Berlin1987, 122-150. Zbl0622.46012MR907690DOI10.1007/BFb0078141
  6. BARBU, V., Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff, Leyden1976. Zbl0328.47035MR390843
  7. BERKSON, E. - PORTA, H., Semigroups of analytic functions and composition operators. Michigan Math. J., 25, 1978, 101-115. Zbl0382.47017MR480965
  8. BRÉZIS, H., Opérateurs Maximaux Monotones. North Holland, Amsterdam1973. 
  9. CARTAN, H., Sur les rétractions d'une variété. C. R. Acad. Sci. Paris, 303, 1986, 715-716. Zbl0609.32021MR870703
  10. CHERNOFF, P. - MARSDEN, J. E., On continuity and smoothness of group actions. Bull. Amer. Math. Soc., 76, 1970, 1044-1049. Zbl0202.23202MR265510
  11. CRANDALL, M. G. - LIGGETT, T. M., Generation of semigroups of nonlinear transformations on general Banach spaces. Amer. J. Math., 93, 1971, 265-298. Zbl0226.47038MR287357
  12. DINEEN, S., The Schwarz Lemma. Clarendon Press, Oxford1989. Zbl0708.46046MR1033739
  13. DINEEN, S. - TIMONEY, P. M. - VIGUÉ, J. P., Pseudodistances invariantes sur les domaines d'un espace localement convexe. Ann. Scuola Norm. Sup. Pisa, 12, 1985, 515-529. Zbl0603.46052MR848840
  14. EARLE, C. J. - HAMILTON, R. S., A fixed point theorem for holomorphic mappings. Proc. Symp. Pure Math., vol. 16, Amer. Math. Soc., Providence, RI, 1970, 61-65. Zbl0205.14702MR266009
  15. FRANZONI, T. - VESENTINI, E., Holomorphic Maps and Invariant Distances. North Holland, Amsterdam1980. Zbl0447.46040MR563329
  16. GIKHMAN, I. I. - SKOROKHOD, A. V., Theory of Random Processes. Nauka, Moscow1973. Zbl0348.60042MR341540
  17. GOEBEL, K. - REICH, S., Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings. Dekker, New York-Basel1984. Zbl0537.46001MR744194
  18. HARRIS, L. A., Schwarz-Pick systems of pseudometrics for domains in normed linear spaces. Advances in Holomorphy, North Holland, Amsterdam1979, 345-406. Zbl0409.46053MR520667
  19. HARRIS, T. E., The Theory of Branching Processes. Springer, Berlin1963. Zbl0117.13002MR163361
  20. HELMKE, U. - MOORE, B., Optimization and Dynamical Systems. Springer, London1994. Zbl0943.93001MR1299725DOI10.1007/978-1-4471-3467-1
  21. JACOBSON, M. E., Computation of extinction probabilities for the Bellman-Harris branching process. Math. Biosciences, 77, 1985, 173-177. Zbl0575.60085MR820410DOI10.1016/0025-5564(85)90095-1
  22. KHATSKEVICH, V. - REICH, S. - SHOIKHET, D., Ergodic type theorems for nonlinear semigroups with holomorphic generators. Recent Developments in Evolution Equations, PitmanResearch Notes in Math., vol. 324, 1995, 191-200. Zbl0863.47053MR1417074
  23. KHATSKEVICH, V. - REICH, S. - SHOIKHET, D., Global implicit function and fixed point theorems for holomorphic mappings and semigroups. Complex Variables, 28, 1996, 347-356. Zbl0843.58007MR1700203
  24. KRASNOSELSKI, M. A. - ZABREIKO, P. P., Geometrical Methods of Nonlinear Analysis. Springer, Berlin1984. MR736839DOI10.1007/978-3-642-69409-7
  25. KUCZUMOW, T. - STACHURA, A., Iterates of holomorphic and k D -nonexpansive mappings in convex domains in C n . Advances Math., 81, 1990, 90-98. Zbl0726.32016MR1051224DOI10.1016/0001-8708(90)90005-8
  26. MAZET, P. - VIGUÉ, J. P., Points fixes d'une application holomorphe d'un domaine borné dans lui-même. Acta Math., 166, 1991, 1-26. Zbl0733.32020MR1088981DOI10.1007/BF02398882
  27. RUDIN, W., The fixed point sets of some holomorphic maps. Bull. Malaysian Math. Soc., 1, 1978, 25-28. Zbl0413.32012MR506535
  28. SEVASTYANOV, B. A., Branching Processes. Nauka, Moscow1971. MR345229
  29. SHAFRIR, I., Coaccretive operators and firmly nonexpansive mappings in the Hilbert ball. Nonlinear Analysis, 18, 1992, 637-648. Zbl0752.47018MR1157564DOI10.1016/0362-546X(92)90003-W
  30. UPMEIER, H., Jordan Algebras in Analysis, Operator Theory and Quantum Mechanics. CBMS - NSF Regional Conference Series in Math., AMS, Providence1987. Zbl0608.17013MR874756
  31. VESENTINI, E., Semigroups of holomorphic isometries. Advances Math., 65, 1987, 272-306. Zbl0642.47035MR904726DOI10.1016/0001-8708(87)90025-9
  32. VESENTINI, E., Krein spaces and holomorphic isometries of Cartan domains. In: S. COEN (ed.), Geometry and Complex Variables. Dekker, New York1991, 409-413. Zbl0829.47029MR1151658
  33. VESENTINI, E., Semigroups of holomorphic isometries. In: S. COEN (ed.), Complex Potential Theory. Kluwer, Dordrecht1994, 475-548. Zbl0802.46058MR1332968
  34. YOSIDA, K., Functional Analysis. Springer, Berlin1968. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.