Pseudodistances invariantes sur les domaines d'un espace localement convexe

Seán Dineen; Richard M. Timoney; Jean-Pierre Vigué

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1985)

  • Volume: 12, Issue: 4, page 515-529
  • ISSN: 0391-173X

How to cite

top

Dineen, Seán, Timoney, Richard M., and Vigué, Jean-Pierre. "Pseudodistances invariantes sur les domaines d'un espace localement convexe." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 12.4 (1985): 515-529. <http://eudml.org/doc/83966>.

@article{Dineen1985,
author = {Dineen, Seán, Timoney, Richard M., Vigué, Jean-Pierre},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Kobayashi and Carathéodory invariant metrics; infinitesimal metrics; convex domain in a locally convex space; existence of geodesics},
language = {fre},
number = {4},
pages = {515-529},
publisher = {Scuola normale superiore},
title = {Pseudodistances invariantes sur les domaines d'un espace localement convexe},
url = {http://eudml.org/doc/83966},
volume = {12},
year = {1985},
}

TY - JOUR
AU - Dineen, Seán
AU - Timoney, Richard M.
AU - Vigué, Jean-Pierre
TI - Pseudodistances invariantes sur les domaines d'un espace localement convexe
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1985
PB - Scuola normale superiore
VL - 12
IS - 4
SP - 515
EP - 529
LA - fre
KW - Kobayashi and Carathéodory invariant metrics; infinitesimal metrics; convex domain in a locally convex space; existence of geodesics
UR - http://eudml.org/doc/83966
ER -

References

top
  1. [1] N. Bourbaki, Topologie générale, chapitre I, Hermann, Paris,1965. MR244924
  2. [2] H. Cartan, Sur les fonctions de plusieurs variables complexs. L'itération des transformations intérieures d'une domaine borné, Math. Z., 35 (1932), pp. 760-773. Zbl0004.40602MR1545327JFM58.0349.02
  3. [3] J.-F. Colombeau - D. Lazet, Sur les théorèmes de Vitali et de Montel en dimension infinie, C.R. Acad. Sci., Paris, A. 274 (1972), pp. 185-187. Zbl0229.46045MR295022
  4. [4] S. Dineen, Complex analysis on locally convex spaces, North-Holland Math. Studies 57, Amsterdam, 1981. Zbl0484.46044MR640093
  5. [5] S. Dineen, The Cartan-Thullen theorem for Banach spaces, Ann. Scuola Norm. Sup. Pisa (3), 24 (1970), pp. 667-676. Zbl0235.46037MR277754
  6. [6] T. Franzoni - E. Vesentini, Holomorphic maps and invariant distances, North-Holland Math. Studies 40, Amsterdam, 1980. Zbl0447.46040MR563329
  7. [7] L.A. Harris, Schwarz-Pick systems of pseudometrics for domains in normed linear spaces, in Advances in Holomorphy, North-Holland Math. Studies 34, Amsterdam, 1979, pp. 345-406. Zbl0409.46053MR520667
  8. [8] L.A. Harris - J.-P. Vigué, A metric condition for equivalence of domains, Atti Accad. Naz. Lincei, 67 (1979), pp. 402-403. Zbl0472.46033MR625903
  9. [9] E. Hille - R. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., 36, A.M.S., Providence, 1957. Zbl0078.10004MR89373
  10. [10] W. Kaup - H. Upmeier, Jordan algebras and symmetric Siegel domains in Banach spaces, Math. Z., 147 (1977), pp. 179-200. Zbl0357.32018MR492414
  11. [11] W. Kaup, A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, Math. Z., 183 (1983), pp. 503-529. Zbl0519.32024MR710768
  12. [12] S. Kobayashi, Hyperbolic manifolds and holomorphic mappings, Marcel Dekker, New York, 1971. Zbl0207.37902MR277770
  13. [13] S. Kobayashi, Intrinsic distances, measures and geometric function theory, Bull. Amer. Math. Soc., 82 (1976), pp. 357-416. Zbl0346.32031MR414940
  14. [14] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France, 109 (1981), pp. 427-474. Zbl0492.32025MR660145
  15. [15] L. Lempert, Holomorphic retracts and intrinsic metrics in convex domains, Anal. math., 8 (1982), pp. 257-261. Zbl0509.32015MR690838
  16. [16] H. Royden - P. Wong, Carathéodory and Kobayashi metric on convex domains, à paraitre. 
  17. [17] E. Vesentini, Complex geodesics, Compositio math., 44 (1981), pp. 375-394. Zbl0488.30015MR662466
  18. [18] E. Vesentini, Complex geodesics and holomorphic maps, Sympos. math., 26 (1982), pp. 211-230. Zbl0506.32008MR663034
  19. [19] E. Vesentini, Invariant distances and invariant differential metrics in locally convex spaces, Spectral theory, Banach center publications, 8 (1982), pp. 493-512. Zbl0505.32020MR738313
  20. [20] J.-P. Vigué, Le groupe des automorphismes analytiques d'un domaine borné d'un espace de Banach complexe. Application aux domaines bornés symétriques, Ann. Scient. Ec. Norm. Sup, (4), 9 (1976), pp. 203-282. Zbl0333.32027MR430335
  21. [21] J.-P. Vigué, Automorphismes analytiques des produits continus de domaines bornés, Ann. scient. Ec. Norm. Sup (4), 11 (1978), pp. 229-246. Zbl0405.32007MR510550
  22. [22] J.-P. Vigué, Sur la convexité des domaines bornés cerclés homogènes, Séminaire Lelong-Skoda, Lecture Notes822, 1980, Springer, Berlin, pp. 317-331. Zbl0444.32016MR599035
  23. [23] J.-P. Vigué, Sur les applications holomorphes isométriques pour la distance de Carathéodory, Ann. Scuola Norm. Sup. Pisa (4), 9 (1982), pp. 255-261. Zbl0507.32017MR674974
  24. [24] J.-P. Vigué, Géodésiques complexes et points fixes d'applications holomorphes, Adv. in Math., 52 (1984), pp. 241-247. Zbl0555.32015MR744858

Citations in EuDML Documents

top
  1. Edoardo Vesentini, Holomorphic semigroups of holomorphic isometries
  2. Simeon Reich, David Shoikhet, Semigroups and generators on convex domains with the hyperbolic metric
  3. Edoardo Vesentini, Holomorphic semigroups of holomorphic isometries
  4. Do Duc Thai, The fixed points of holomorphic maps on a convex domain
  5. José M. Isidro, Jean-Pierre Vigué, On the product property of the Carathéodory pseudodistance
  6. Jean-Pierre Vigué, Sur la caractérisation des isomorphismes analytiques entre domaines bornés d'un espace de Banach complexe
  7. Marco Abate, Giorgio Patrizio, Isometries of the Teichmüller metric
  8. Tatsuhiro Honda, A special version of the Schwarz lemma on an infinite dimensional domain
  9. Sergio Venturini, On holomorphic isometries for the Kobayashi and Carathéodory distances on complex manifolds
  10. Sergio Venturini, On holomorphic isometries for the Kobayashi and Carathéodory distances on complex manifolds

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.