Pseudodistances invariantes sur les domaines d'un espace localement convexe
Seán Dineen; Richard M. Timoney; Jean-Pierre Vigué
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1985)
- Volume: 12, Issue: 4, page 515-529
- ISSN: 0391-173X
Access Full Article
topHow to cite
topDineen, Seán, Timoney, Richard M., and Vigué, Jean-Pierre. "Pseudodistances invariantes sur les domaines d'un espace localement convexe." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 12.4 (1985): 515-529. <http://eudml.org/doc/83966>.
@article{Dineen1985,
author = {Dineen, Seán, Timoney, Richard M., Vigué, Jean-Pierre},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Kobayashi and Carathéodory invariant metrics; infinitesimal metrics; convex domain in a locally convex space; existence of geodesics},
language = {fre},
number = {4},
pages = {515-529},
publisher = {Scuola normale superiore},
title = {Pseudodistances invariantes sur les domaines d'un espace localement convexe},
url = {http://eudml.org/doc/83966},
volume = {12},
year = {1985},
}
TY - JOUR
AU - Dineen, Seán
AU - Timoney, Richard M.
AU - Vigué, Jean-Pierre
TI - Pseudodistances invariantes sur les domaines d'un espace localement convexe
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1985
PB - Scuola normale superiore
VL - 12
IS - 4
SP - 515
EP - 529
LA - fre
KW - Kobayashi and Carathéodory invariant metrics; infinitesimal metrics; convex domain in a locally convex space; existence of geodesics
UR - http://eudml.org/doc/83966
ER -
References
top- [1] N. Bourbaki, Topologie générale, chapitre I, Hermann, Paris,1965. MR244924
- [2] H. Cartan, Sur les fonctions de plusieurs variables complexs. L'itération des transformations intérieures d'une domaine borné, Math. Z., 35 (1932), pp. 760-773. Zbl0004.40602MR1545327JFM58.0349.02
- [3] J.-F. Colombeau - D. Lazet, Sur les théorèmes de Vitali et de Montel en dimension infinie, C.R. Acad. Sci., Paris, A. 274 (1972), pp. 185-187. Zbl0229.46045MR295022
- [4] S. Dineen, Complex analysis on locally convex spaces, North-Holland Math. Studies 57, Amsterdam, 1981. Zbl0484.46044MR640093
- [5] S. Dineen, The Cartan-Thullen theorem for Banach spaces, Ann. Scuola Norm. Sup. Pisa (3), 24 (1970), pp. 667-676. Zbl0235.46037MR277754
- [6] T. Franzoni - E. Vesentini, Holomorphic maps and invariant distances, North-Holland Math. Studies 40, Amsterdam, 1980. Zbl0447.46040MR563329
- [7] L.A. Harris, Schwarz-Pick systems of pseudometrics for domains in normed linear spaces, in Advances in Holomorphy, North-Holland Math. Studies 34, Amsterdam, 1979, pp. 345-406. Zbl0409.46053MR520667
- [8] L.A. Harris - J.-P. Vigué, A metric condition for equivalence of domains, Atti Accad. Naz. Lincei, 67 (1979), pp. 402-403. Zbl0472.46033MR625903
- [9] E. Hille - R. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., 36, A.M.S., Providence, 1957. Zbl0078.10004MR89373
- [10] W. Kaup - H. Upmeier, Jordan algebras and symmetric Siegel domains in Banach spaces, Math. Z., 147 (1977), pp. 179-200. Zbl0357.32018MR492414
- [11] W. Kaup, A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, Math. Z., 183 (1983), pp. 503-529. Zbl0519.32024MR710768
- [12] S. Kobayashi, Hyperbolic manifolds and holomorphic mappings, Marcel Dekker, New York, 1971. Zbl0207.37902MR277770
- [13] S. Kobayashi, Intrinsic distances, measures and geometric function theory, Bull. Amer. Math. Soc., 82 (1976), pp. 357-416. Zbl0346.32031MR414940
- [14] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France, 109 (1981), pp. 427-474. Zbl0492.32025MR660145
- [15] L. Lempert, Holomorphic retracts and intrinsic metrics in convex domains, Anal. math., 8 (1982), pp. 257-261. Zbl0509.32015MR690838
- [16] H. Royden - P. Wong, Carathéodory and Kobayashi metric on convex domains, à paraitre.
- [17] E. Vesentini, Complex geodesics, Compositio math., 44 (1981), pp. 375-394. Zbl0488.30015MR662466
- [18] E. Vesentini, Complex geodesics and holomorphic maps, Sympos. math., 26 (1982), pp. 211-230. Zbl0506.32008MR663034
- [19] E. Vesentini, Invariant distances and invariant differential metrics in locally convex spaces, Spectral theory, Banach center publications, 8 (1982), pp. 493-512. Zbl0505.32020MR738313
- [20] J.-P. Vigué, Le groupe des automorphismes analytiques d'un domaine borné d'un espace de Banach complexe. Application aux domaines bornés symétriques, Ann. Scient. Ec. Norm. Sup, (4), 9 (1976), pp. 203-282. Zbl0333.32027MR430335
- [21] J.-P. Vigué, Automorphismes analytiques des produits continus de domaines bornés, Ann. scient. Ec. Norm. Sup (4), 11 (1978), pp. 229-246. Zbl0405.32007MR510550
- [22] J.-P. Vigué, Sur la convexité des domaines bornés cerclés homogènes, Séminaire Lelong-Skoda, Lecture Notes822, 1980, Springer, Berlin, pp. 317-331. Zbl0444.32016MR599035
- [23] J.-P. Vigué, Sur les applications holomorphes isométriques pour la distance de Carathéodory, Ann. Scuola Norm. Sup. Pisa (4), 9 (1982), pp. 255-261. Zbl0507.32017MR674974
- [24] J.-P. Vigué, Géodésiques complexes et points fixes d'applications holomorphes, Adv. in Math., 52 (1984), pp. 241-247. Zbl0555.32015MR744858
Citations in EuDML Documents
top- Edoardo Vesentini, Holomorphic semigroups of holomorphic isometries
- Simeon Reich, David Shoikhet, Semigroups and generators on convex domains with the hyperbolic metric
- Edoardo Vesentini, Holomorphic semigroups of holomorphic isometries
- Do Duc Thai, The fixed points of holomorphic maps on a convex domain
- José M. Isidro, Jean-Pierre Vigué, On the product property of the Carathéodory pseudodistance
- Jean-Pierre Vigué, Sur la caractérisation des isomorphismes analytiques entre domaines bornés d'un espace de Banach complexe
- Marco Abate, Giorgio Patrizio, Isometries of the Teichmüller metric
- Tatsuhiro Honda, A special version of the Schwarz lemma on an infinite dimensional domain
- Sergio Venturini, On holomorphic isometries for the Kobayashi and Carathéodory distances on complex manifolds
- Sergio Venturini, On holomorphic isometries for the Kobayashi and Carathéodory distances on complex manifolds
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.