Length of curves on Lip manifolds
Giuseppe De Cecco; Giuliana Palmieri
- Volume: 1, Issue: 3, page 215-221
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topDe Cecco, Giuseppe, and Palmieri, Giuliana. "Length of curves on Lip manifolds." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 1.3 (1990): 215-221. <http://eudml.org/doc/244275>.
@article{DeCecco1990,
abstract = {In this paper the length of a curve on a Lipschitz Riemannian manifold is defined. It is shown that the above definition is consistent with the definition of the geodesic distance already introduced by the authors, both in a geometrical and analytical way.},
author = {De Cecco, Giuseppe, Palmieri, Giuliana},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Lipschitz manifold; Length; Nonsmooth analysis; Lipschitz manifolds; geodesic distance; Lipschitz curves},
language = {eng},
month = {9},
number = {3},
pages = {215-221},
publisher = {Accademia Nazionale dei Lincei},
title = {Length of curves on Lip manifolds},
url = {http://eudml.org/doc/244275},
volume = {1},
year = {1990},
}
TY - JOUR
AU - De Cecco, Giuseppe
AU - Palmieri, Giuliana
TI - Length of curves on Lip manifolds
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1990/9//
PB - Accademia Nazionale dei Lincei
VL - 1
IS - 3
SP - 215
EP - 221
AB - In this paper the length of a curve on a Lipschitz Riemannian manifold is defined. It is shown that the above definition is consistent with the definition of the geodesic distance already introduced by the authors, both in a geometrical and analytical way.
LA - eng
KW - Lipschitz manifold; Length; Nonsmooth analysis; Lipschitz manifolds; geodesic distance; Lipschitz curves
UR - http://eudml.org/doc/244275
ER -
References
top- DE CECCO, G. - PALMIERI, G., Distanza intrinseca su una varietà riemanniana di Lipschitz. Rend. Sem. Mat. Torino, to appear.
- DE CECCO, G. - PALMIERI, G., Integral distance on a Lipschitz Riemannian manifold. Rapporti Dip. Mat. Un. Bari, n. 2, 1990. Zbl0722.58006
- DE GIORGI, E., Su alcuni problemi comuni all'Analisi e alla Geometria. Atti Conv. Geom. Diff. Lecce, Note di Matematica, 9, (Supplemento), 1989, to appear.
- GROMOV, M. (rédigé par J. Lafontaine, P. Pansu), Structures métriques pour les variétés riemanniennes. Cedic-Nathan, Paris1981. Zbl0509.53034MR682063
- LUUKKAINEN, J. - VÄISÄLÄ, J., Elements of Lipschitz Topology. Ann. Ac. Sc. Fennicae, 3, 1977. Zbl0397.57011MR515647
- RINOW, W., Die innere Geometrie der metrischen Räume. Springer, 1961. Zbl0096.16302MR123969
- TELEMAN, N., The Index of Signature Operators on Lipschitz Manifolds. Publ. Math. IHES, 58, 1983, 261-290. Zbl0531.58044MR720931
- WHITNEY, H., Geometric Integration Theory. Princeton Univ. Press, 1956. Zbl0083.28204MR87148
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.