A notion of total variation depending on a metric with discontinuous coefficients
Annales de l'I.H.P. Analyse non linéaire (1994)
- Volume: 11, Issue: 1, page 91-133
- ISSN: 0294-1449
Access Full Article
topHow to cite
topAmar, M., and Bellettini, G.. "A notion of total variation depending on a metric with discontinuous coefficients." Annales de l'I.H.P. Analyse non linéaire 11.1 (1994): 91-133. <http://eudml.org/doc/78325>.
@article{Amar1994,
author = {Amar, M., Bellettini, G.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {generalized perimeter; functions of bounded variation; integral functionals; relaxed functional},
language = {eng},
number = {1},
pages = {91-133},
publisher = {Gauthier-Villars},
title = {A notion of total variation depending on a metric with discontinuous coefficients},
url = {http://eudml.org/doc/78325},
volume = {11},
year = {1994},
}
TY - JOUR
AU - Amar, M.
AU - Bellettini, G.
TI - A notion of total variation depending on a metric with discontinuous coefficients
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1994
PB - Gauthier-Villars
VL - 11
IS - 1
SP - 91
EP - 133
LA - eng
KW - generalized perimeter; functions of bounded variation; integral functionals; relaxed functional
UR - http://eudml.org/doc/78325
ER -
References
top- [1] G. Alberti, A lusin Type Theorem for Gradients, J. Funct. Anal., Vol. 100 (1), 1991, pp. 110-118. Zbl0752.46025MR1124295
- [2] G. Anzellotti, Traces of Bounded Vectorfields and the Divergence Theorm, preprint Univ. Trento, 1983. MR750538
- [3] G. Anzellotti, Pairings Between Measures and Bounded Functions and Compensated Compactness, Ann. Mat. Pura e Appl., (4), Vol. 135, 1983, pp. 293-318. Zbl0572.46023MR750538
- [4] A.C. Barroso and I. Fonseca, Anisotropic Singular Perturbations. The Vectorial Case, Research Report n. 92-NA-015, Carnegie Mellon University, 1992. Zbl0804.49013
- [5] G. Bouchitté and M. Valadier, Integral Representation of Convex Functionals on a Space of Measures, J. Funct. Anal., Vol. 80, 1988, pp. 398-420. Zbl0662.46009MR961907
- [6] G. Bouchitté, Singular Perturbations of Variational Problems Arising from a Two-Phase Transition Model, Appl. Math. and Opt., Vol. 21, 1990, pp. 289-315. Zbl0695.49003MR1036589
- [7] G. Bouchitté and G. DalMASO, Integral Representation and Relaxation of Convex Local Functionals on BV(Ω), preprint SISSA, April 1991, to appear on Ann. Scuola Norm. Sup., Pisa. MR1267597
- [8] H. Brezis, Analyse Fonctionnelle. Théorie et Applications, Masson, Paris, 1983. Zbl0511.46001MR697382
- [9] H. Busemann and W. Mayer, On the Foundations of Calculus of Variations, Trans. Amer. Math., Soc., Vol. 49, 1941, pp. 173-198. Zbl0024.41703MR3475
- [10] H. Busemann, Metric Methods in Finsler Spaces and in the Foundations of Geometry, Ann. of Math. Studies, Vol. 8, Princeton Univ. Press, Princeton, 1942. Zbl0063.00672MR7251
- [11] G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations, Longman, Harlow, 1989. Zbl0669.49005MR1020296
- [12] G. Buttazzo and G. Dal Maso, Integral Representation and Relaxation of Local Functionals, Nonlinear Analysis, Theory, Methods & Applications, Vol. 9, 1985, pp. 515-532. Zbl0527.49008
- [13] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lect. Not. in Math., Vol. 580, Springer-Verlag, Berlin, 1977. Zbl0346.46038MR467310
- [14] B. Dacorogna, Direct Methods in the Calculus of Variations, Springer-Verlag, Berlin, 1989. Zbl0703.49001MR990890
- [15] G. Dal Maso, Integral Representation on BV(Ω) of Γ-Limits of Variational Integrals, Manuscripta Math., Vol. 30, 1980, pp. 387-416. Zbl0435.49016MR567216
- [16] G. Dal Maso, An Introduction to Γ-Convergence, preprint SISSA, 1992, Trieste, to appear on Birkhäuser. Zbl0816.49001MR1201152
- [17] G. Dal Maso and L. Modica, A General Theory of Variational Functionals, in: Topics in Functional Analysis (1980–1981), Quaderni Scuola Norm. Sup. Pisa, Pisa, 1980, pp. 149-221. Zbl0493.49005MR671757
- [18] G. De Cecco, Geometria sulle Varietá di Lipschitz, preprint Univ. di Roma "La Sapienza", 1992, pp. 1-38.
- [19] G. De Cecco and G. Palmieri, Distanza Intriseca su una Varietà Riemanniana di Lipschitz, Rend. Sem. Mat. Univ. Pol. Torino, Vol. 46, 1988, pp. 157-170. Zbl0719.53047MR1084564
- [20] G. De Cecco and G. Palmieri, Lenght of Curves on Lip manifolds, Rend. Mat. Acc. Lincei, Vol. 1, (9), 1990, pp. 215-221. Zbl0719.53046MR1083250
- [21] G. De Cecco and G. Palmieri, Integral Distance on a Lipschitz Riemannian Manifold, Math. Zeitschrift, Vol. 207, 1991, pp. 223-243. Zbl0722.58006MR1109664
- [22] E. De Giorgi, Nuovi Teoremi Relativi alle Misure (r-1)-dimensionali in uno Spazio a r Dimensioni, Ricerche Mat. IV, 1955, pp. 95-113. Zbl0066.29903MR74499
- [23] E. De Giorgi, Conversazioni di Matematica, Quaderni Dip. Mat. Univ. Lecce, 1988- 1990, Vol. 2, 1990.
- [24] E. De Giorgi, Su Alcuni Problemi Comuni all'Analisi e alla Geometria, Note di Matematica, IX-Suppl., 1989, pp. 59-71.
- [25] E. De Giorgi, Alcuni Problemi Variazionali della Geometria, Conference in onore di G. Aquaro, Bari, Italy, 9 Nov. 1990, 1991, pp. 112-125, Conferenze del Sem. Mat. Bari.
- [26] E. De Giorgi, F. Colombini and L.C. Piccinini, Frontiere Orientate di Misura Minima e Questioni Collegate, Quaderni della Classe di Scienze della Scuola Normale Superiore di Pisa, Pisa, 1972. Zbl0296.49031MR493669
- [27] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland, New York, 1976. Zbl0322.90046MR463994
- [28] H. Federer, Geometric Measure Theory, Springer-Verlag, Berlin, 1968. Zbl0176.00801MR257325
- [29] N. Fusco and G. Moscariello, L2-Lower Semicontinuity of Functionals of Quadratic Type, Ann. di Mat. Pura e Appl., Vol. 129, 1981, pp. 305-326. Zbl0483.49008MR648337
- [30] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Boston, 1984. Zbl0545.49018MR775682
- [31] C. Goffman and J. Serrin, Sublinear Functions of Measures and Variational Integrals, Duke Math. J., Vol. 31, 1964, pp. 159-178. Zbl0123.09804MR162902
- [32] S. Luckhaus and L. Modica, The Gibbs-Thomson Relation within the Gradient Theory of Phase Transitions, Arch. Rat. Mech. An, Vol. 1, 1989, pp. 71-83. Zbl0681.49012MR1000224
- [33] U. Massari and M. Miranda, Minimal Surfaces of Codimension One, North-Holland, New York, 1984. Zbl0565.49030MR795963
- [34] V.G. Maz'ya, Sobolev Spaces, Springer-Verlag, Berlin, 1985. Zbl0692.46023MR817985
- [35] M. Miranda, Superfici Cartesiane Generalizzate ed Insiemi di Perimetro Localmente Finito sui Prodotti Cartesiani, Ann. Scuola Norm. Sup., Pisa, Vol. 3, 1964, pp. 515- 542. Zbl0152.24402MR174706
- [36] C.B. Morrey, Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin, 1966. Zbl0142.38701MR202511
- [37] J. Neveu, Bases Mathématiques du Calcul des Probabilités, Masson, Paris, 1980. Zbl0203.49901
- [38] N. Owen, Non Convex Variational Problems with General Singular Perturbations, Trans. Am. Math. Soc. Vol. 310, 1988, pp. 393-404. Zbl0718.34075
- [39] N. Owen and P. Sternberg, Non Convex Variational Problems with Anisotropic Perturbations, Nonlin. Anal., Vol. 16, 1991, pp. 705-719. Zbl0748.49034
- [40] C. Pauc, La Méthode Métrique en Calcul des Variations, Hermann, Paris, 1941. Zbl0027.10502MR12736
- [41] Yu G. Reshetnyak, Weak Convergence of Completely Additive Vector Functions on a Set , Siberian Math. J., Vol. 9, 1968, pp. 1039-1045. Zbl0176.44402
- [42] W. Rinow, Die Innere Geometrie der Metrischen Räume, Springer-Verlag, Berlin, 1961. Zbl0096.16302MR123969
- [43] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, New Jersey, 1972. Zbl0193.18401MR1451876
- [44] N. Teleman, The Index of Signature Operators on Lipschitz Manifolds, Inst. Hautes Études Sci. Publ. Math., Vol. 58, 1983, pp. 39-78. Zbl0531.58044MR720931
- [45] S. Venturini, Derivations of Distance Functions on Rn, preprint, 1993.
- [46] A.I. Vol'pert, The Space BV and Quasilinear Equation, Math. USSR Sbornik, Vol. 2, 1967, pp. 225-267. Zbl0168.07402
Citations in EuDML Documents
top- L. Ambrosio, M. Novaga, E. Paolini, Some regularity results for minimal crystals
- L. Ambrosio, M. Novaga, E. Paolini, Some regularity results for minimal crystals
- Luca Esposito, Nicola Fusco, Cristina Trombetti, A quantitative version of the isoperimetric inequality : the anisotropic case
- Nicola Fusco, Virginia De Cicco, Micol Amar, Lower semicontinuity and relaxation results in BV for integral functionals with BV integrands
- Angelo Alvino, Vincenzo Ferone, Guido Trombetti, Pierre-Louis Lions, Convex symmetrization and applications
- V. Caselles, A. Chambolle, S. Moll, M. Novaga, A characterization of convex calibrable sets in with respect to anisotropic norms
- Micol Amar, Virginia De Cicco, Nicola Fusco, Lower semicontinuity and relaxation results in BV for integral functionals with BV integrands
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.