Asymptotic behaviour in planar vortex theory
Antonio Ambrosetti; Jian Fu Yang
- Volume: 1, Issue: 4, page 285-291
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topReferences
top- AMBROSETTI, A. - MANCINI, G., On some free boundary problems. In: H. BERESTYCKI and H. BREZIS (eds.), Recent contributions to nonlinear partial differential equations. Pitman, 1981. Zbl0477.35084MR639743
- AMBROSETTI, A. - STRUWE, M., Existence of steady vortex rings in an ideal fluid. Arch. Rat. Mech. and Anal., 108-2, 1989, 97-109. Zbl0694.76012MR1011553DOI10.1007/BF01053458
- AMICK, C. J. - TURNER, R. E. L., A global branch of steady vortex rings. J. Rein. Angew. Math., 384, 1988, 1-23. Zbl0628.76032MR929976
- BERGER, M. S. - FRAENKEL, L. E., Nonlinear desingularization in certain free-boundary problems. Comm. Math. Phys., 77, 1980, 149-172. Zbl0454.35087MR589430
- CAFFARELLI, L. A. - FRIEDMAN, A., Asymptotic estimates for the Plasma Problem. Duke Math. Journal., 47-3, 1980, 705-742. Zbl0466.35033MR587175
- FRAENKEL, L. E. - BERGER, M. S., A global theory of steady vortex rings in an ideal fluid. Acta Math., 132, 1974, 13-51. Zbl0282.76014MR422916
- HILL, M. J. M., On a spherical vortex. Phil. Trans. Roy. Soc. London, 185, 1894, 213-245. JFM25.1471.01
- NI, W. M., On the existence of global vortex rings. J. d'Analyse Math., 37, 1980, 208-247. Zbl0457.76020MR583638DOI10.1007/BF02797686
- NORBURY, J., Steady planar vortex pairs in an ideal fluid. Comm. Pure Appl. Math., 28, 1975, 679-700. Zbl0338.76015MR399645