Asymptotic behaviour in planar vortex theory

Antonio Ambrosetti; Jian Fu Yang

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1990)

  • Volume: 1, Issue: 4, page 285-291
  • ISSN: 1120-6330

Abstract

top
The asymptotic behaviour of solutions of a class of free-boundary problems arising in vortex theory is discussed.

How to cite

top

Ambrosetti, Antonio, and Yang, Jian Fu. "Asymptotic behaviour in planar vortex theory." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 1.4 (1990): 285-291. <http://eudml.org/doc/244323>.

@article{Ambrosetti1990,
abstract = {The asymptotic behaviour of solutions of a class of free-boundary problems arising in vortex theory is discussed.},
author = {Ambrosetti, Antonio, Yang, Jian Fu},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Free boundary problems; Vortex theory; Nonlinear desingularization; asymptotic behaviour of solutions; free-boundary problems; vortex theory},
language = {eng},
month = {12},
number = {4},
pages = {285-291},
publisher = {Accademia Nazionale dei Lincei},
title = {Asymptotic behaviour in planar vortex theory},
url = {http://eudml.org/doc/244323},
volume = {1},
year = {1990},
}

TY - JOUR
AU - Ambrosetti, Antonio
AU - Yang, Jian Fu
TI - Asymptotic behaviour in planar vortex theory
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1990/12//
PB - Accademia Nazionale dei Lincei
VL - 1
IS - 4
SP - 285
EP - 291
AB - The asymptotic behaviour of solutions of a class of free-boundary problems arising in vortex theory is discussed.
LA - eng
KW - Free boundary problems; Vortex theory; Nonlinear desingularization; asymptotic behaviour of solutions; free-boundary problems; vortex theory
UR - http://eudml.org/doc/244323
ER -

References

top
  1. AMBROSETTI, A. - MANCINI, G., On some free boundary problems. In: H. BERESTYCKI and H. BREZIS (eds.), Recent contributions to nonlinear partial differential equations. Pitman, 1981. Zbl0477.35084MR639743
  2. AMBROSETTI, A. - STRUWE, M., Existence of steady vortex rings in an ideal fluid. Arch. Rat. Mech. and Anal., 108-2, 1989, 97-109. Zbl0694.76012MR1011553DOI10.1007/BF01053458
  3. AMICK, C. J. - TURNER, R. E. L., A global branch of steady vortex rings. J. Rein. Angew. Math., 384, 1988, 1-23. Zbl0628.76032MR929976
  4. BERGER, M. S. - FRAENKEL, L. E., Nonlinear desingularization in certain free-boundary problems. Comm. Math. Phys., 77, 1980, 149-172. Zbl0454.35087MR589430
  5. CAFFARELLI, L. A. - FRIEDMAN, A., Asymptotic estimates for the Plasma Problem. Duke Math. Journal., 47-3, 1980, 705-742. Zbl0466.35033MR587175
  6. FRAENKEL, L. E. - BERGER, M. S., A global theory of steady vortex rings in an ideal fluid. Acta Math., 132, 1974, 13-51. Zbl0282.76014MR422916
  7. HILL, M. J. M., On a spherical vortex. Phil. Trans. Roy. Soc. London, 185, 1894, 213-245. JFM25.1471.01
  8. NI, W. M., On the existence of global vortex rings. J. d'Analyse Math., 37, 1980, 208-247. Zbl0457.76020MR583638DOI10.1007/BF02797686
  9. NORBURY, J., Steady planar vortex pairs in an ideal fluid. Comm. Pure Appl. Math., 28, 1975, 679-700. Zbl0338.76015MR399645

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.