On the eigenvalues of an elliptic operator a x , H u

Sergio Campanato

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1992)

  • Volume: 3, Issue: 2, page 107-110
  • ISSN: 1120-6330

Abstract

top
Let Ω be a bounded open convex set of class C 2 . Let a x , H u be a non linear operator satisfying the condition (A) (elliptic) with constants α , γ , δ . We prove that a number λ 0 is an eigenvalue for the operator a x , H u if and only if the number α λ is an eigen-value for the operator Δ u . If λ 0 , the two systems a x , H u = λ u and Δ u = α λ u have the same solutions. In particular, also the eventual eigen-values of the operator a x , H u should all be negative. Finally, we obtain a sufficient condition for the existence of solutions u H 2 H 0 1 Ω of the system a x , H u = b x , u , D u where b x , u , p is a vector in R N with a controlled growth.

How to cite

top

Campanato, Sergio. "On the eigenvalues of an elliptic operator \( a(x,H(u)) \)." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 3.2 (1992): 107-110. <http://eudml.org/doc/244325>.

@article{Campanato1992,
abstract = {Let \( \Omega \) be a bounded open convex set of class \( C^\{2\} \). Let \( a(x,H(u)) \) be a non linear operator satisfying the condition (A) (elliptic) with constants \( \alpha \), \( \gamma \), \( \delta \). We prove that a number \( \lambda \ge 0 \) is an eigenvalue for the operator \( a(x,H(u)) \) if and only if the number \( \alpha \lambda \) is an eigen-value for the operator \( \Delta u \). If \( \lambda \ge 0 \) , the two systems \( a(x,H(u)) = \lambda u \) and \( \Delta u = \alpha \lambda u \) have the same solutions. In particular, also the eventual eigen-values of the operator \( a(x,H(u)) \) should all be negative. Finally, we obtain a sufficient condition for the existence of solutions \( u \in H^\{2\} \cap H\_\{0\}^\{1\} (\Omega) \) of the system \( a(x,H(u)) = b(x,u,Du) \) where \( b(x,u,p) \) is a vector in \( \mathbb\{R\}^\{N\} \) with a controlled growth.},
author = {Campanato, Sergio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Non linear elliptic systems; Eigen-values; Conditions for existence; eigenvalues of the Laplacian; Carathéodory function},
language = {eng},
month = {6},
number = {2},
pages = {107-110},
publisher = {Accademia Nazionale dei Lincei},
title = {On the eigenvalues of an elliptic operator \( a(x,H(u)) \)},
url = {http://eudml.org/doc/244325},
volume = {3},
year = {1992},
}

TY - JOUR
AU - Campanato, Sergio
TI - On the eigenvalues of an elliptic operator \( a(x,H(u)) \)
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1992/6//
PB - Accademia Nazionale dei Lincei
VL - 3
IS - 2
SP - 107
EP - 110
AB - Let \( \Omega \) be a bounded open convex set of class \( C^{2} \). Let \( a(x,H(u)) \) be a non linear operator satisfying the condition (A) (elliptic) with constants \( \alpha \), \( \gamma \), \( \delta \). We prove that a number \( \lambda \ge 0 \) is an eigenvalue for the operator \( a(x,H(u)) \) if and only if the number \( \alpha \lambda \) is an eigen-value for the operator \( \Delta u \). If \( \lambda \ge 0 \) , the two systems \( a(x,H(u)) = \lambda u \) and \( \Delta u = \alpha \lambda u \) have the same solutions. In particular, also the eventual eigen-values of the operator \( a(x,H(u)) \) should all be negative. Finally, we obtain a sufficient condition for the existence of solutions \( u \in H^{2} \cap H_{0}^{1} (\Omega) \) of the system \( a(x,H(u)) = b(x,u,Du) \) where \( b(x,u,p) \) is a vector in \( \mathbb{R}^{N} \) with a controlled growth.
LA - eng
KW - Non linear elliptic systems; Eigen-values; Conditions for existence; eigenvalues of the Laplacian; Carathéodory function
UR - http://eudml.org/doc/244325
ER -

References

top
  1. CAMPANATO, S., Non variational differential systems. A condition for local existence and uniqueness. Proceedings of the Caccioppoli Conference, 1989, to appear. Zbl0796.35052MR1306303
  2. CAMPANATO, S., Sistemi differenziali del 2° ordine di tipo ellittico. Quaderno 1 del Dottorato di Ricerca in Matematica, Catania1991. 
  3. CAMPANATO, S., A Cordes type condition for nonlinear non variational systems. Rend. Acc. Naz. delle Scienze, vol. 13, 1989, 307-321. Zbl0702.35084MR1041758

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.