On the eigenvalues of an elliptic operator
- Volume: 3, Issue: 2, page 107-110
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topCampanato, Sergio. "On the eigenvalues of an elliptic operator \( a(x,H(u)) \)." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 3.2 (1992): 107-110. <http://eudml.org/doc/244325>.
@article{Campanato1992,
abstract = {Let \( \Omega \) be a bounded open convex set of class \( C^\{2\} \). Let \( a(x,H(u)) \) be a non linear operator satisfying the condition (A) (elliptic) with constants \( \alpha \), \( \gamma \), \( \delta \). We prove that a number \( \lambda \ge 0 \) is an eigenvalue for the operator \( a(x,H(u)) \) if and only if the number \( \alpha \lambda \) is an eigen-value for the operator \( \Delta u \). If \( \lambda \ge 0 \) , the two systems \( a(x,H(u)) = \lambda u \) and \( \Delta u = \alpha \lambda u \) have the same solutions. In particular, also the eventual eigen-values of the operator \( a(x,H(u)) \) should all be negative. Finally, we obtain a sufficient condition for the existence of solutions \( u \in H^\{2\} \cap H\_\{0\}^\{1\} (\Omega) \) of the system \( a(x,H(u)) = b(x,u,Du) \) where \( b(x,u,p) \) is a vector in \( \mathbb\{R\}^\{N\} \) with a controlled growth.},
author = {Campanato, Sergio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Non linear elliptic systems; Eigen-values; Conditions for existence; eigenvalues of the Laplacian; Carathéodory function},
language = {eng},
month = {6},
number = {2},
pages = {107-110},
publisher = {Accademia Nazionale dei Lincei},
title = {On the eigenvalues of an elliptic operator \( a(x,H(u)) \)},
url = {http://eudml.org/doc/244325},
volume = {3},
year = {1992},
}
TY - JOUR
AU - Campanato, Sergio
TI - On the eigenvalues of an elliptic operator \( a(x,H(u)) \)
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1992/6//
PB - Accademia Nazionale dei Lincei
VL - 3
IS - 2
SP - 107
EP - 110
AB - Let \( \Omega \) be a bounded open convex set of class \( C^{2} \). Let \( a(x,H(u)) \) be a non linear operator satisfying the condition (A) (elliptic) with constants \( \alpha \), \( \gamma \), \( \delta \). We prove that a number \( \lambda \ge 0 \) is an eigenvalue for the operator \( a(x,H(u)) \) if and only if the number \( \alpha \lambda \) is an eigen-value for the operator \( \Delta u \). If \( \lambda \ge 0 \) , the two systems \( a(x,H(u)) = \lambda u \) and \( \Delta u = \alpha \lambda u \) have the same solutions. In particular, also the eventual eigen-values of the operator \( a(x,H(u)) \) should all be negative. Finally, we obtain a sufficient condition for the existence of solutions \( u \in H^{2} \cap H_{0}^{1} (\Omega) \) of the system \( a(x,H(u)) = b(x,u,Du) \) where \( b(x,u,p) \) is a vector in \( \mathbb{R}^{N} \) with a controlled growth.
LA - eng
KW - Non linear elliptic systems; Eigen-values; Conditions for existence; eigenvalues of the Laplacian; Carathéodory function
UR - http://eudml.org/doc/244325
ER -
References
top- CAMPANATO, S., Non variational differential systems. A condition for local existence and uniqueness. Proceedings of the Caccioppoli Conference, 1989, to appear. Zbl0796.35052MR1306303
- CAMPANATO, S., Sistemi differenziali del 2° ordine di tipo ellittico. Quaderno 1 del Dottorato di Ricerca in Matematica, Catania1991.
- CAMPANATO, S., A Cordes type condition for nonlinear non variational systems. Rend. Acc. Naz. delle Scienze, vol. 13, 1989, 307-321. Zbl0702.35084MR1041758
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.