A linear extrapolation method for a general phase relaxation problem

Xun Jiang

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1996)

  • Volume: 7, Issue: 3, page 169-179
  • ISSN: 1120-6330

Abstract

top
This paper examines a linear extrapolation time-discretization of a 2 D phase relaxation model with temperature dependent convection and reaction. The model consists of a diffusion-advection PDE for temperature and an ODE with double obstacle ± 1 for phase variable. Under a stability constraint, this scheme is shown to converge with optimal orders O τ log τ 1 / 2 for temperature and enthalpy, and O τ 1 / 2 log τ 1 / 2 for heat flux as time-step τ 0 .

How to cite

top

Jiang, Xun. "A linear extrapolation method for a general phase relaxation problem." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 7.3 (1996): 169-179. <http://eudml.org/doc/244327>.

@article{Jiang1996,
abstract = {This paper examines a linear extrapolation time-discretization of a \( 2D \) phase relaxation model with temperature dependent convection and reaction. The model consists of a diffusion-advection PDE for temperature and an ODE with double obstacle \( \pm 1 \) for phase variable. Under a stability constraint, this scheme is shown to converge with optimal orders \( \mathcal\{O\} (\tau | \log \tau |^\{1/2\}) \) for temperature and enthalpy, and \( \mathcal\{O\} (\tau^\{1/2\} | \log \tau |^\{1/2\}) \) for heat flux as time-step \( \tau \downarrow 0 \).},
author = {Jiang, Xun},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Phase relaxation; Stefan problem; Error estimate; Semi-implicit; Extrapolation; error estimate; semi-implicit; extrapolation; time-discretization; 2D phase relaxation model; diffusion-advection},
language = {eng},
month = {12},
number = {3},
pages = {169-179},
publisher = {Accademia Nazionale dei Lincei},
title = {A linear extrapolation method for a general phase relaxation problem},
url = {http://eudml.org/doc/244327},
volume = {7},
year = {1996},
}

TY - JOUR
AU - Jiang, Xun
TI - A linear extrapolation method for a general phase relaxation problem
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1996/12//
PB - Accademia Nazionale dei Lincei
VL - 7
IS - 3
SP - 169
EP - 179
AB - This paper examines a linear extrapolation time-discretization of a \( 2D \) phase relaxation model with temperature dependent convection and reaction. The model consists of a diffusion-advection PDE for temperature and an ODE with double obstacle \( \pm 1 \) for phase variable. Under a stability constraint, this scheme is shown to converge with optimal orders \( \mathcal{O} (\tau | \log \tau |^{1/2}) \) for temperature and enthalpy, and \( \mathcal{O} (\tau^{1/2} | \log \tau |^{1/2}) \) for heat flux as time-step \( \tau \downarrow 0 \).
LA - eng
KW - Phase relaxation; Stefan problem; Error estimate; Semi-implicit; Extrapolation; error estimate; semi-implicit; extrapolation; time-discretization; 2D phase relaxation model; diffusion-advection
UR - http://eudml.org/doc/244327
ER -

References

top
  1. BERGER, A. E. - BREZIS, H. - ROGERS, J. C. W., A numerical method for solving the problem u t Δ f u = 0 . RAIRO Anal. Numér., 1979, 297-312. Zbl0426.65052MR555381
  2. GILBARG, D. - TRUDINGER, N. S., Elliptic Partial Differential Equations of Second Order. 2nd ed., Springer, Berlin-Heidelberg1983. Zbl0361.35003MR737190
  3. JIANG, X. - NOCHETTO, R. H., Optimal error estimates for a semidiscrete phase relaxation model. RAIRO Model. Math. Anal. Numer., to appear. Zbl0874.65069MR1432853
  4. MAGENES, E. - NOCHETTO, R. H. - VERDI, C., Energy error estimates for a linear scheme to approximate nonlinear parabolic problems. RAIRO Model. Math. Anal. Numer., 21, 1987, 655-678. Zbl0635.65123MR921832
  5. NOCHETTO, R. H., Error estimates for multidimensional singular parabolic problems. Japan J. Appl. Math., 4, 1987, 111-138. Zbl0657.65132MR899207DOI10.1007/BF03167758
  6. NOCHETTO, R. H., Finite element methods for parabolic free boundary problems. In: W. LIGHT (ed.), Advances in Numerical Analysis, Vol. I: Nonlinear Partial Differential Equations and Dynamical Systems. 1990 Lancaster Summer School Proceedings, Oxford University Press, 1991, 34-88. Zbl0733.65089MR1138471
  7. NOCHETTO, R. H. - PAOLINI, M. - VERDI, C., Continuous and semidiscrete travelling waves for a phase relaxation model. European J. Appl. Math., 5, 1994, 177-199. Zbl0812.35166MR1285038DOI10.1017/S095679250000139X
  8. NOCHETTO, R. H. - VERDI, C., An efficient linear scheme to approximate parabolic free boundary problems: error estimates and implementation. Math. Comp., 51, 1988, 27-53. Zbl0657.65131MR942142DOI10.2307/2008578
  9. RULLA, J., Error analysis for implicit approximations to solutions to Cauchy problems. SIAM J. Numer. Anal, 33, 1996, 31-55. Zbl0855.65102MR1377244DOI10.1137/0733005
  10. VERDI, C., Numerical aspects of parabolic free boundary and hysteresis problems. In: A. VISINTIN (ed.), Phase Transition and Hysteresis. LN Math., vol. 158, Springer-Verlag, Berlin1994. Zbl0819.35155MR1321834DOI10.1007/BFb0073398
  11. VERDI, C. - VISINTIN, A., Error estimates for a semi-explicit numerical scheme for Stefan-type problems. Numer. Math., 52, 1988, 165-185. Zbl0617.65125MR923709DOI10.1007/BF01398688
  12. VISINTIN, A., Stefan problem with phase relaxation. IMA J. Appl. Math., 34, 1985, 225-245. Zbl0585.35053MR804824DOI10.1093/imamat/34.3.225
  13. VISINTIN, A., Supercooling and superheating effects in phase transition. IMA J. Appl. Math., 35, 1985, 233-256. Zbl0615.35090MR839201DOI10.1093/imamat/35.2.233

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.