Optimal error estimates for semidiscrete phase relaxation models

Xun Jiang; Ricardo H. Nochetto

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1997)

  • Volume: 31, Issue: 1, page 91-120
  • ISSN: 0764-583X

How to cite

top

Jiang, Xun, and Nochetto, Ricardo H.. "Optimal error estimates for semidiscrete phase relaxation models." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 31.1 (1997): 91-120. <http://eudml.org/doc/193833>.

@article{Jiang1997,
author = {Jiang, Xun, Nochetto, Ricardo H.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {semi-implicit method; semi-explicit method; extrapolation method; error estimates; phase relaxation; heat transfer equation; convection; reaction; stability},
language = {eng},
number = {1},
pages = {91-120},
publisher = {Dunod},
title = {Optimal error estimates for semidiscrete phase relaxation models},
url = {http://eudml.org/doc/193833},
volume = {31},
year = {1997},
}

TY - JOUR
AU - Jiang, Xun
AU - Nochetto, Ricardo H.
TI - Optimal error estimates for semidiscrete phase relaxation models
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1997
PB - Dunod
VL - 31
IS - 1
SP - 91
EP - 120
LA - eng
KW - semi-implicit method; semi-explicit method; extrapolation method; error estimates; phase relaxation; heat transfer equation; convection; reaction; stability
UR - http://eudml.org/doc/193833
ER -

References

top
  1. [1] T. ARGOGAST, M. F. WHEELER and N. Y. ZHANG, A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media, SIAM J. Numer. Anal, (to appear). Zbl0856.76033MR1403565
  2. [2] C. BAIOCCHI, 1989, Discretization of evolution inequalities, in Partial Differential Equations and the Calculus of Variations, F. Colombini, A. Marino, M. Modica and S. Spagnolo eds, Birkäuser, Boston, pp. 59-92. Zbl0677.65068MR1034002
  3. [3] J. W. BARRETT and P. KNABNER, Finite element approximation of transport of reactive solutes in porous media. Part 2 : Error estimates for equilibrium adsorption processes (to appear). Zbl0904.76039
  4. [4] H. BREZIS, 1971, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, in Contributions to Nonlinear Functional Analysis, E. Zarantonello ed., Academic Press, New York, pp. 101-156. Zbl0278.47033MR394323
  5. [5] M. G. CRANDALL and T. M. LIGGETT, 1971, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math., 93,pp. 265-298. Zbl0226.47038MR287357
  6. [6] X. JIANG and R. H. NOCHETTO, A P1-P1 finite element method for a phase relaxation model. Part I : Quasi-uniform mesh (to appear). Zbl0972.65067MR1619875
  7. [7] E. MAGENES, R. H. NOCHETTO and C. VERDI, 1987, Energy error estimates for a linear scheme to approximate nonlinear parabolic problems, RAIRO Model. Math. Anal. Numer., 21, pp, 655-678. Zbl0635.65123MR921832
  8. [8] R. H. NOCHETTO, 1987, Error estimates for multidimensional singular parabolic problems, Japan J. Appl Math., 4, pp.111-138. Zbl0657.65132MR899207
  9. [9] R. H. NOCHETTO, 1991, Finite element methods for parabolic free boundary problems, in Advances in Numerical Analysis, Vol I: Nonlinear Partial Differential Equations and Dynamical Systems, W. Light ed., 1990 Lancaster Summer School Proceedings, Oxford University Press, pp. 34-88. Zbl0733.65089MR1138471
  10. [10] R. H. NOCHETTO, M. PAOLINI and C. VERDI, 1994, Continuous and semidiscrete travelling waves for a phase relaxation model, European J. Appl. Math,, 5, pp. 177-199. Zbl0812.35166MR1285038
  11. [11] R. H. NOCHETTO and C. VERDI, 1988, Approximation of degenerate parabolic problems using numerical integration, SIAM J. Numer. Anal., 25, pp. 784-814. Zbl0655.65131MR954786
  12. [12] J. RULLA, 1996, Error analysis for implicit approximations to solutions to Cauchy problems, SIAM J. Numer. Anal., 33, pp. 68-87. Zbl0855.65102MR1377244
  13. [13] G. SAVARE, Weak solutions and maximal regularity for abstract evolution inequalities (to appear). Zbl0858.35073MR1411975
  14. [14] C. VERDI, 1994, Numerical aspects of parabolic free boundary and hysteresis problems, in Phase Transitions and Hysteresis Phenomena, A. Vismtin (ed.). Springer-Verlag, Berlin, pp. 213-284. Zbl0819.35155MR1321834
  15. [15] C. VERDI and A. VISINTIN, 1987, Numerical analysis of the multidimensional Stefan problem with supercooling and superheating, Boll Unione Mat. Ital. I-B, 7, pp. 795-814. Zbl0629.65130MR916294
  16. [16] C. VERDI and A. VISINTIN, 1988, Error estimates for a semi-explicit numerical scheme for Stefan-type problems, Numer. Math. 52, pp. 165-185. Zbl0617.65125MR923709
  17. [17] A. VISINTIN, 1985, Stefan problem with phase relaxation, IMA J. Appl. Math., 34,p. 225-245. Zbl0585.35053MR804824
  18. [18] A. VISINTIN, 1985, Supercooling and superheating effects in phase transitions,IMA J. Appl. Math., 35, pp 233-256. Zbl0615.35090MR839201

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.