BEM and FEM results of displacements in a poroelastic column

Bettina Albers; Stavros A. Savidis; H. Ercan Taşan; Otto von Estorff; Malte Gehlken

International Journal of Applied Mathematics and Computer Science (2012)

  • Volume: 22, Issue: 4, page 883-896
  • ISSN: 1641-876X

Abstract

top
The dynamical investigation of two-component poroelastic media is important for practical applications. Analytic solution methods are often not available since they are too complicated for the complex governing sets of equations. For this reason, often some existing numerical methods are used. In this work results obtained with the finite element method are opposed to those obtained by Schanz using the boundary element method. Not only the influence of the number of elements and time steps on the simple example of a poroelastic column but also the impact of different values of the permeability coefficient is investigated.

How to cite

top

Bettina Albers, et al. "BEM and FEM results of displacements in a poroelastic column." International Journal of Applied Mathematics and Computer Science 22.4 (2012): 883-896. <http://eudml.org/doc/244535>.

@article{BettinaAlbers2012,
abstract = {The dynamical investigation of two-component poroelastic media is important for practical applications. Analytic solution methods are often not available since they are too complicated for the complex governing sets of equations. For this reason, often some existing numerical methods are used. In this work results obtained with the finite element method are opposed to those obtained by Schanz using the boundary element method. Not only the influence of the number of elements and time steps on the simple example of a poroelastic column but also the impact of different values of the permeability coefficient is investigated.},
author = {Bettina Albers, Stavros A. Savidis, H. Ercan Taşan, Otto von Estorff, Malte Gehlken},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {finite element method; boundary element method; poroelastic media},
language = {eng},
number = {4},
pages = {883-896},
title = {BEM and FEM results of displacements in a poroelastic column},
url = {http://eudml.org/doc/244535},
volume = {22},
year = {2012},
}

TY - JOUR
AU - Bettina Albers
AU - Stavros A. Savidis
AU - H. Ercan Taşan
AU - Otto von Estorff
AU - Malte Gehlken
TI - BEM and FEM results of displacements in a poroelastic column
JO - International Journal of Applied Mathematics and Computer Science
PY - 2012
VL - 22
IS - 4
SP - 883
EP - 896
AB - The dynamical investigation of two-component poroelastic media is important for practical applications. Analytic solution methods are often not available since they are too complicated for the complex governing sets of equations. For this reason, often some existing numerical methods are used. In this work results obtained with the finite element method are opposed to those obtained by Schanz using the boundary element method. Not only the influence of the number of elements and time steps on the simple example of a poroelastic column but also the impact of different values of the permeability coefficient is investigated.
LA - eng
KW - finite element method; boundary element method; poroelastic media
UR - http://eudml.org/doc/244535
ER -

References

top
  1. Albers, B. (2010). Modeling and Numerical Analysis of Wave Propagation in Saturated and Partially Saturated Porous Media, Postdoctoral thesis, Veröffentlichungen des Grundbauinstitutes der Technischen Universität Berlin, Vol. 48, Shaker, Aachen. Zbl1284.76334
  2. Allard, J.F. (1993). Propagation of Sound in Porous Media. Modelling Sound Absorbing Materials, Elsevier, Essex. 
  3. Atalla, N., Hamdi, A.M. and Panneton, R. (2001). Enhanced weak integral formulation for mixed (u,p) poroelastic equations, Journal of the Acoustical Society of America 109(6): 3065-3068. 
  4. Atalla, N., Panneton, R. and Debergue, P. (1998). A mixed pressure-displacement formulation for poroelastic materials, Journal of the Acoustical Society of America 104(3): 1444-1452. 
  5. Biot, M.A. (1941). General theory of three dimensional consolidation, Journal of Applied Physics 12(2): 155-164. Zbl67.0837.01
  6. Biot, M.A. (1956). Theory of propagation of elastic waves in a fluid saturated porous solid, I: Low frequency range, II: Higher frequency range, Journal of the Acoustical Society of America 28(2): 168-191. 
  7. Bonnet, G. (1987). Basic singular solutions for a poroelastic medium in the dynamic range, Journal of the Acoustical Society of America 82(5): 1758-1762. 
  8. Cheng, A.H.-D., Badmus, T. and Beskos, D.E. (1991). Integral equations for dynamic poroelasticity in frequency domain with BEM solution, Journal of Engineering Mechanics (ASCE) 117(5): 1136-1157. 
  9. de Boer, R. and Ehlers, W. (1986). Theorie der Mehrkomponentenkontinua mit Anwendung auf bodenmechanische Probleme, Teil I, Technical Report 40, Forschungsberichte aus dem Fachbereich Bauwesen der Universität-GH Essen, Essen. 
  10. Dominguez, J. (1992). Boundary element approach for dynamic poroelastic problems, International Journal for Numerical Methods in Engineering 35(2): 307-324. Zbl0768.73084
  11. Eringen, A.C. and Suhubi, S.S. (1975). Elastodynamics, Vol. II, Academic Press, New York, NY. Zbl0344.73036
  12. Fischer, M. (2004). The Fast Multipole Boundary Element Method and its Application to Structure-Acoustic Field Interaction, Ph.D. thesis, Universität Stuttgart, Stuttgart. 
  13. Goodman, M.A. and Cowin, S.C. (1972). A continuum theory of granular materials, Archive for Rational Mechanics and Analysis 44(4): 249-266. Zbl0243.76005
  14. Göransson, P. (1995). A weighted residual formulation of the acoustic wave propagation through a flexible porous material and comparison with a limp material model, Journal of Sound and Vibration 182(3): 479-494. 
  15. Hild, P. (2011). A sign preserving mixed finite element approximation for contact problems, International Journal of Applied Mathematics and Computer Science 21(3): 487-498, DOI: 10.2478/v10006-011-0037-7. Zbl05999228
  16. Holler, S. (2006). Dynamisches Mehrphasenmodell mit hypoplastischer Materialformulierung der Feststoffphase, Ph.D. thesis, RWTH Aachen, Aachen. 
  17. Kelder, O. and Smeulders, D.M.J. (1997). Observation of the Biot slow wave in water-saturated Nivelsteiner sandstone, Geophysics 62(6): 1794-1796. 
  18. Kogut, J. and Ciurej, H. (2010). A vehicle-track-soil dynamic interaction problem in sequential and parallel formulation, International Journal of Applied Mathematics and Computer Science 20(2): 295-303, DOI: 10.2478/v10006-010-0022-6. Zbl1196.93019
  19. Korsawe, J. and Starke, G. (2005). A least-squares mixed finite element method for Biot's consolidation problem in porous media, SIAM Journal on Numerical Analysis 43(1): 318-339. Zbl1086.76041
  20. Korsawe, J., Starke, G., Wang, W. and Kolditz, O. (2006). Finite element analysis of poro-elastic consolidation in porous media: Standard and mixed approaches, Computer Methods in Applied Mechanics and Engineering 195(9-12): 1096-1115. Zbl1177.76199
  21. Lewis, R.W. and Schrefler, B.A. (1998). The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, Wiley, Chichester. Zbl0935.74004
  22. Naumann, K. (2004). Implementierung eines Finiten Elementes in das FEM-Programmsystem ANSYS zur gekoppelten Fluid-Struktur Berechnung poröser Medien, Master's thesis, TU Berlin, Berlin. 
  23. Panneton, R. and Atalla, N. (1997). An efficient finite element scheme for solving the threedimensional poroelasticity problem in acoustics, Journal of the Acoustical Society of America 101(6): 3287-3298. 
  24. Plona, T. J. (1980). Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies, Applied Physics Letters 36(4): 259-261. 
  25. Rackwitz, F., Naumann, K. and Savidis, S.A. (2005). Implementierung eines Finiten Elements zur Konsolidationsberechnung mit ANSYS, 23rd CADFEM Users' Meeting 2005, Bonn, Germany, (on CD-ROM/DVD). 
  26. Savidis, S.A., Albers, B., Taşan, H.E. and Savvidis, G. (2011). Finite-Elemente-Berechnungen quasistatischer und dynamischer Probleme mit einem poroelastischen Zweikomponentenmodell, Bauingenieur 5: 241-249. 
  27. Savvidis, G. (2009). Implementierung eines Finiten Elements in das FEM-Programmsystem ANSYS zur gekoppelten Fluid-Struktur Berechnung von wassergesättigten Böden, Master's thesis, TU Berlin, Berlin. 
  28. Schanz, M. (2001). Application of 3d time domain boundary element formulation to wave propagation in poroelastic solids, Engineering Analysis with Boundary Elements 25(4-5): 363-376. Zbl1015.74074
  29. Schanz, M. and Cheng, A.H.-D. (2000). Transient wave propagation in a one-dimensional poroelastic column, Acta Mechanica 145(1-4): 1-18. Zbl0987.74039
  30. Schrefler, B.A. and Scotta, R. (2001). A fully coupled dynamic model for two-phase fluid flow in deformable porous media, Computer Methods in Applied Mechanics and Engineering 190(24-25): 3223-3246. Zbl0977.74019
  31. Taşan, H.E. (2012). Zur Dimensionierung der MonopileGründungen von Offshore-Windenergieanlagen, Ph.D. thesis, Veröffentlichungen des Grundbauinstitutes der Technischen Universität Berlin, Vol. 52, Aachen. 
  32. Taşan, H.E., Rackwitz, F. and Savidis, S.A. (2010). Behaviour of cyclic laterally loaded diameter monopiles in saturated sand, Proceedings of the 7th European Conference of Numerical Methods in Geotechnical Engineering, Trondheim, Norway, pp. 889-894. 
  33. von Estorff, O. and Hagen, C. (2006). Iterative coupling of FEM and BEM in 3D transient elastodynamics, Engineering Analysis with Boundary Elements 30(7): 611-622. Zbl1195.74202
  34. von Terzaghi, K. (1936). The shearing resistance of saturated soils and the angle between the planes of shear, 1st International Conference on Soil Mechanics and Foundation Engineering, Cambridge, MA, USA, Vol. 1, pp. 54-56. 
  35. Wilmanski, K. (1996). Porous media at finite strains-The new model with the balance equation for porosity, Archives of Mechanics 48(4): 591-628. Zbl0864.73007
  36. Zienkiewicz, O.C., Chan, A.H.C., Pastor, M., Schrefler, B.A. and Shiomi, T. (1999). Computational Geomechanics with Special Reference to Earthquake Engineering, John Wiley & Sons, West Sussex. Zbl0932.74003
  37. Zienkiewicz, O.C. and Shiomi, T. (1984). Dynamic behaviour of saturated porous media: The generalized Biot formulation and its numerical solution, International Journal for Numerical and Analytical Methods in Geomechanics 8(1): 71-96. Zbl0526.73099

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.