Theoretical and numerical study of a quasi-linear Zakharov system describing Landau damping
R. Belaouar; T. Colin; G. Gallice; C. Galusinski
- Volume: 40, Issue: 6, page 961-990
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topBelaouar, R., et al. "Theoretical and numerical study of a quasi-linear Zakharov system describing Landau damping." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 40.6 (2006): 961-990. <http://eudml.org/doc/244648>.
@article{Belaouar2006,
abstract = {In this paper, we study a Zakharov system coupled to an electron diffusion equation in order to describe laser-plasma interactions. Starting from the Vlasov-Maxwell system, we derive a nonlinear Schrödinger like system which takes into account the energy exchanged between the plasma waves and the electrons via Landau damping. Two existence theorems are established in a subsonic regime. Using a time-splitting, spectral discretizations for the Zakharov system and a finite difference scheme for the electron diffusion equation, we perform numerical simulations and show how Landau damping works quantitatively.},
author = {Belaouar, R., Colin, T., Gallice, G., Galusinski, C.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Landau damping; Zakharov system; electron diffusion equation; existence theorems; finite difference scheme},
language = {eng},
number = {6},
pages = {961-990},
publisher = {EDP-Sciences},
title = {Theoretical and numerical study of a quasi-linear Zakharov system describing Landau damping},
url = {http://eudml.org/doc/244648},
volume = {40},
year = {2006},
}
TY - JOUR
AU - Belaouar, R.
AU - Colin, T.
AU - Gallice, G.
AU - Galusinski, C.
TI - Theoretical and numerical study of a quasi-linear Zakharov system describing Landau damping
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2006
PB - EDP-Sciences
VL - 40
IS - 6
SP - 961
EP - 990
AB - In this paper, we study a Zakharov system coupled to an electron diffusion equation in order to describe laser-plasma interactions. Starting from the Vlasov-Maxwell system, we derive a nonlinear Schrödinger like system which takes into account the energy exchanged between the plasma waves and the electrons via Landau damping. Two existence theorems are established in a subsonic regime. Using a time-splitting, spectral discretizations for the Zakharov system and a finite difference scheme for the electron diffusion equation, we perform numerical simulations and show how Landau damping works quantitatively.
LA - eng
KW - Landau damping; Zakharov system; electron diffusion equation; existence theorems; finite difference scheme
UR - http://eudml.org/doc/244648
ER -
References
top- [1] H. Added and S. Added, Equation of Langmuir turbulence and nonlinear Schrödinger equation: smoothness and approximation. J. Funct. Anal. 79 (1988) 183–210. Zbl0655.76044
- [2] B. Bidégaray, On a nonlocal Zakharov equation. Nonlinear Anal. 25 (1995) 247–278. Zbl0830.35123
- [3] M. Colin and T. Colin, On a quasilinear Zakharov System describing laser-plasma interactions. Diff. Int. Eqs. 17 (2004) 297–330. Zbl1174.35528
- [4] T. Colin and G. Metivier, Instabilities in Zakharov Equations for Laser Propagation in a Plasma, Phase Space Analysis of PDEs, A. Bove, F. Colombini, and D. Del Santo, Eds., Progress in Nonlinear Differential Equations and Their Applications, Birkhauser (2006). Zbl1133.35303MR2263207
- [5] J.-L. Delcroix and A. Bers, Physique des plasmas 1, 2. Inter Editions-Editions du CNRS (1994).
- [6] J. Ginibre, Y. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system. J. Funct. Anal. 151 (1997) 384–436. Zbl0894.35108
- [7] L. Glangetas and F. Merle, Existence of self-similar blow-up solutions for Zakharov equation in dimension two. I. Comm. Math. Phys. 160 (1994) 173–215. Zbl0808.35137
- [8] L. Glangetas and F. Merle, Concentration properties of blow up solutions and instability results for Zakharov equation in dimension two. II. Comm. Math. Phys. 160 (1994) 349–389. Zbl0808.35138
- [9] R.T. Glassey, Convergence of an energy-preserving scheme for the Zakharov equations in one space dimension. Math. Comp. 58 (1992) 83–102. Zbl0746.65066
- [10] C.E. Kenig, G. Ponce and L. Vega, Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations. Invent. Math. 134 (1998) 489–545. Zbl0928.35158
- [11] F. Linares, G. Ponce and J.C. Saut, On a degenerate Zakharov system. Bull. Braz. Math. Soc. New Series 36 (2005) 1–23. Zbl1070.35087
- [12] T. Ozawa and Y. Tsutsumi, Existence and smoothing effect of solution for the Zakharov equations. Publ. Res. Inst. Math. Sci. 28 (1992) 329–361. Zbl0842.35116
- [13] G.L. Payne, D.R. Nicholson and R.M. Downie, Numerical Solution of the Zakharov Equations. J. Compt. Phys. 50 (1983) 482–498. Zbl0518.76122
- [14] G. Riazuelo. Étude théorique et numérique de l’influence du lissage optique sur la filamentation des faisceaux lasers dans les plasmas sous-critiques de fusion inertielle. Ph.D. thesis, University of Paris XI.
- [15] D.A. Russel, D.F. Dubois and H.A. Rose. Nonlinear saturation of simulated Raman scattering in laser hot spots. Phys. Plasmas 6 (1999) 1294–1317.
- [16] K.Y. Sanbomatsu, Competition between Langmuir wave-wave and wave-particule interactions. Ph.D. thesis, University of Colorado, Department of Astrophysical (1997).
- [17] S. Schochet and M. Weinstein, The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence. Comm. Math. Phys. 106 (1986) 569–580. Zbl0639.76054
- [18] C. Sulem and P.-L. Sulem, Quelques résultats de régularité pour les équations de la turbulence de Langmuir. C. R. Acad. Sci. Paris Sér. A-B 289 (1979) 173–176. Zbl0431.35077
- [19] C. Sulem and P.-L. Sulem, The nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse. Appl. Math. Sci. 139, Springer (1999). Zbl0928.35157MR1696311
- [20] B. Texier, Derivation of the Zakharov equations. Arch. Rat. Mech. Anal. (to appear). Zbl05146096MR2289864
- [21] V.E. Zakharov, S.L. Musher and A.M. Rubenchik, Hamiltonian approach to the description of nonlinear plasma phenomena. Phys. Reports 129 (1985) 285–366.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.