Wadge degrees of -languages of deterministic Turing machines
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2003)
- Volume: 37, Issue: 1, page 67-83
 - ISSN: 0988-3754
 
Access Full Article
topAbstract
topHow to cite
topSelivanov, Victor. "Wadge degrees of $\sf \omega $-languages of deterministic Turing machines." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 37.1 (2003): 67-83. <http://eudml.org/doc/244653>.
@article{Selivanov2003,
	abstract = {We describe Wadge degrees of $\omega $-languages recognizable by deterministic Turing machines. In particular, it is shown that the ordinal corresponding to these degrees is $\xi ^\omega $ where $\xi =\omega ^\{\rm CK\}_1$ is the first non-recursive ordinal known as the Church–Kleene ordinal. This answers a question raised in [2].},
	author = {Selivanov, Victor},
	journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
	keywords = {hierarchy; Wadge degree; $\omega $-language; ordinal; Turing machine; set-theoretic operation; -language; Borel set; Wadge hierarchy},
	language = {eng},
	number = {1},
	pages = {67-83},
	publisher = {EDP-Sciences},
	title = {Wadge degrees of $\sf \omega $-languages of deterministic Turing machines},
	url = {http://eudml.org/doc/244653},
	volume = {37},
	year = {2003},
}
TY  - JOUR
AU  - Selivanov, Victor
TI  - Wadge degrees of $\sf \omega $-languages of deterministic Turing machines
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2003
PB  - EDP-Sciences
VL  - 37
IS  - 1
SP  - 67
EP  - 83
AB  - We describe Wadge degrees of $\omega $-languages recognizable by deterministic Turing machines. In particular, it is shown that the ordinal corresponding to these degrees is $\xi ^\omega $ where $\xi =\omega ^{\rm CK}_1$ is the first non-recursive ordinal known as the Church–Kleene ordinal. This answers a question raised in [2].
LA  - eng
KW  - hierarchy; Wadge degree; $\omega $-language; ordinal; Turing machine; set-theoretic operation; -language; Borel set; Wadge hierarchy
UR  - http://eudml.org/doc/244653
ER  - 
References
top- [1] A. Andretta, Notes on Descriptive Set Theory. Manuscript (2001).
 - [2] J. Duparc, A hierarchy of deterministic context-free -languages. Theoret. Comput. Sci. 290 (2003) 1253-1300. Zbl1044.68090MR1937723
 - [3] Yu.L. Ershov, On a hierarchy of sets II. Algebra and Logic 7 (1968) 15-47 (Russian). Zbl0216.00902MR270912
 - [4] J. Köbler, U. Shöning and K.W. Wagner, The difference and truth-table hierarchies for NP, Preprint 7. Dep. of Informatics, Koblenz (1986).
 - [5] K. Kuratowski and A. Mostowski, Set Theory. North Holland, Amsterdam (1967). Zbl0165.01701MR229526
 - [6] A. Louveau, Some results in the Wadge hierarchy of Borel sets. Springer, Lecture Notes in Math. 1019 (1983) 28-55. Zbl0535.03026MR730585
 - [7] Y.N. Moschovakis, Descriptive set theory. North Holland, Amsterdam (1980). Zbl0433.03025MR561709
 - [8] H. Rogers Jr., Theory of recursive functions and effective computability. McGraw-Hill, New York (1967). Zbl0183.01401MR224462
 - [9] V.L. Selivanov, Hierarchies of hyperarithmetical sets and functions. Algebra i Logika 22 (1983) 666-692 (English translation: Algebra and Logic 22 (1983) 473-491). Zbl0548.03022MR781399
 - [10] V.L. Selivanov, Hierarchies, Numerations, Index Sets. Handwritten Notes (1992) 300 pp.
 - [11] V.L. Selivanov, Fine hierarchy of regular -languages, Preprint No. 14. The University of Heidelberg, Chair of Mathematical Logic (1994) 13 pp. MR1490562
 - [12] V.L. Selivanov, Fine hierarchy of regular -languages. Springer, Berlin, Lecture Notes in Comput. Sci. 915 (1995) 277-287.
 - [13] V.L. Selivanov, Fine hierarchies and Boolean terms. J. Symb. Logic 60 (1995) 289-317. Zbl0824.03022MR1324514
 - [14] V.L. Selivanov, Fine hierarchy of regular -languages. Theoret. Comput. Sci. 191 (1998) 37-59. Zbl0908.68085MR1490562
 - [15] V.L. Selivanov, Wadge Degrees of -Languages of Deterministic Turing Machines. Springer, Berlin, Lecture Notes in Comput. Sci. 2607 (2003) 97-108. Zbl1036.03033MR2066584
 - [16] L. Staiger, -languages. Springer, Berlin, Handb. Formal Languages 3 (1997) 339-387. MR1470023
 - [17] J. Steel, Determinateness and the separation property. J. Symb. Logic 45 (1980) 143-146. Zbl0487.03031MR604876
 - [18] W. Wadge, Degrees of complexity of subsets of the Baire space. Notices Amer. Math. Soc. (1972) R-714.
 - [19] W. Wadge, Reducibility and determinateness in the Baire space, Ph.D. Thesis. University of California, Berkeley (1984).
 - [20] K. Wagner, On -regular sets. Inform. and Control 43 (1979) 123-177. Zbl0434.68061MR553694
 - [21] R. Van Wesep, Wadge degrees and descriptive set theory. Springer, Lecture Notes in Math. 689 (1978) 151-170. Zbl0393.03037MR526917
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.