Curl bounds grad on SO(3)

Ingo Münch; Patrizio Neff

ESAIM: Control, Optimisation and Calculus of Variations (2008)

  • Volume: 14, Issue: 1, page 148-159
  • ISSN: 1292-8119

Abstract

top
Let F p GL ( 3 ) be the plastic deformation from the multiplicative decomposition in elasto-plasticity. We show that the geometric dislocation density tensor of Gurtin in the form Curl [ F p ] · ( F p ) T applied to rotations controls the gradient in the sense that pointwise R C 1 ( 3 , SO ( 3 ) ) : Curl [ R ] · R T 𝕄 3 × 3 2 1 2 D R 27 2 . This result complements rigidity results [Friesecke, James and Müller, Comme Pure Appl. Math. 55 (2002) 1461–1506; John, Comme Pure Appl. Math. 14 (1961) 391–413; Reshetnyak, Siberian Math. J. 8 (1967) 631–653)] as well as an associated linearized theorem saying that A C 1 ( 3 , 𝔰𝔬 ( 3 ) ) : Curl [ A ] 𝕄 3 × 3 2 1 2 D A 27 2 = axl [ A ] 9 2 .

How to cite

top

Münch, Ingo, and Neff, Patrizio. "Curl bounds grad on SO(3)." ESAIM: Control, Optimisation and Calculus of Variations 14.1 (2008): 148-159. <http://eudml.org/doc/244674>.

@article{Münch2008,
abstract = {Let $F^\{\rm p\} \in \{\rm GL\}(3)$ be the plastic deformation from the multiplicative decomposition in elasto-plasticity. We show that the geometric dislocation density tensor of Gurtin in the form $\{\rm Curl\}[\{F^\{\rm p\}\}]\cdot (F^\{\rm p\})^T$ applied to rotations controls the gradient in the sense that pointwise $ \forall R \in C^1(\mathbb \{R\}^3, \{\rm SO\}(3)): \Vert \{\rm Curl\}[R] \cdot R^T \Vert _\{\mathbb \{M\}^\{3\times 3\}\}^2 \ge \frac\{1\}\{2\} \Vert \{\rm D\}R\Vert _\{\mathbb \{R\}^\{27\}\}^2$. This result complements rigidity results [Friesecke, James and Müller, Comme Pure Appl. Math. 55 (2002) 1461–1506; John, Comme Pure Appl. Math. 14 (1961) 391–413; Reshetnyak, Siberian Math. J. 8 (1967) 631–653)] as well as an associated linearized theorem saying that $ \forall A \in C^1(\mathbb \{R\}^3, \mathfrak \{so\}(3)): \Vert \{\rm Curl\}[A]\Vert _\{\mathbb \{M\}^\{3\times 3\}\}^2 \ge \frac\{1\}\{2\} \Vert \{\rm D\}A\Vert _\{\mathbb \{R\}^\{27\}\}^2 = \Vert \nabla \{\rm axl\}[A]\Vert _\{\mathbb \{R\}^9\}^2$.},
author = {Münch, Ingo, Neff, Patrizio},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {rotations; polar-materials; microstructure; dislocation density; rigidity; differential geometry; structured continua; multiplicative decomposition; elasto-plasticity; geometric dislocation density tensor},
language = {eng},
number = {1},
pages = {148-159},
publisher = {EDP-Sciences},
title = {Curl bounds grad on SO(3)},
url = {http://eudml.org/doc/244674},
volume = {14},
year = {2008},
}

TY - JOUR
AU - Münch, Ingo
AU - Neff, Patrizio
TI - Curl bounds grad on SO(3)
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2008
PB - EDP-Sciences
VL - 14
IS - 1
SP - 148
EP - 159
AB - Let $F^{\rm p} \in {\rm GL}(3)$ be the plastic deformation from the multiplicative decomposition in elasto-plasticity. We show that the geometric dislocation density tensor of Gurtin in the form ${\rm Curl}[{F^{\rm p}}]\cdot (F^{\rm p})^T$ applied to rotations controls the gradient in the sense that pointwise $ \forall R \in C^1(\mathbb {R}^3, {\rm SO}(3)): \Vert {\rm Curl}[R] \cdot R^T \Vert _{\mathbb {M}^{3\times 3}}^2 \ge \frac{1}{2} \Vert {\rm D}R\Vert _{\mathbb {R}^{27}}^2$. This result complements rigidity results [Friesecke, James and Müller, Comme Pure Appl. Math. 55 (2002) 1461–1506; John, Comme Pure Appl. Math. 14 (1961) 391–413; Reshetnyak, Siberian Math. J. 8 (1967) 631–653)] as well as an associated linearized theorem saying that $ \forall A \in C^1(\mathbb {R}^3, \mathfrak {so}(3)): \Vert {\rm Curl}[A]\Vert _{\mathbb {M}^{3\times 3}}^2 \ge \frac{1}{2} \Vert {\rm D}A\Vert _{\mathbb {R}^{27}}^2 = \Vert \nabla {\rm axl}[A]\Vert _{\mathbb {R}^9}^2$.
LA - eng
KW - rotations; polar-materials; microstructure; dislocation density; rigidity; differential geometry; structured continua; multiplicative decomposition; elasto-plasticity; geometric dislocation density tensor
UR - http://eudml.org/doc/244674
ER -

References

top
  1. [1] S. Aubry and M. Ortiz, The mechanics of deformation-induced subgrain-dislocation structures in metallic crystals at large strains. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 459 (2003) 3131–3158. Zbl1041.74506MR2027358
  2. [2] B.A. Bilby, R. Bullough and E. Smith, Continuous distributions of dislocations: a new application of the methods of non-riemannian geometry. Proc. Roy. Soc. London, Ser. A 231 (1955) 263–273. MR75068
  3. [3] E. Cartan, Leçons sur la géometrie des espaces de Riemann. Gauthier-Villars, Paris (1928). Zbl0060.38101MR20842JFM54.0755.01
  4. [4] P. Cermelli and M.E. Gurtin, On the characterization of geometrically necessary dislocations in finite plasticity. J. Mech. Phys. Solids 49 (2001) 1539–1568. Zbl0989.74013
  5. [5] S. Conti and M. Ortiz, Dislocation microstructures and the effective behavior of single crystals. Arch. Rat. Mech. Anal. 176 (2005) 103–147. Zbl1064.74144MR2185859
  6. [6] A. Einstein, Relativity: The Special and General Theory. Crown, New-York (1961). Zbl0029.18303JFM48.1059.07
  7. [7] J.D. Eshelby, The continuum theory of lattice defects, volume III of Solid state Physics. Academic Press, New-York (1956). 
  8. [8] G. Friesecke, R.D. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Comm. Pure Appl. Math. 55 (2002) 1461–1506. Zbl1021.74024MR1916989
  9. [9] M.E. Gurtin, An Introduction to Continuum Mechanics, Mathematics in Science and Engineering 158. Academic Press, London, 1st edn. (1981). Zbl0559.73001MR636255
  10. [10] M.E. Gurtin, On the plasticity of single crystals: free energy, microforces, plastic-strain gradients. J. Mech. Phys. Solids 48 (2000) 989–1036. Zbl0988.74021MR1746552
  11. [11] J.P. Hirth and J. Lothe, Theory of Dislocations. McGraw-Hill, New-York (1968). 
  12. [12] F. John, Rotation and strain. Comm. Pure Appl. Math. 14 (1961) 391–413. Zbl0102.17404MR138225
  13. [13] J. Jost, Riemannian Geometry. Springer-Verlag (2002). MR1871261
  14. [14] K. Kondo, Geometry of elastic deformation and incompatibility, in Memoirs of the Unifying Study of the Basic Problems in Engineering Science by Means of Geometry, volume 1, Division C, K. Kondo Ed., Gakujutsu Bunken Fukyo-Kai (1955) 361–373. Zbl0068.14803MR80956
  15. [15] E. Kröner, Der fundamentale Zusammenhang zwischen Versetzungsdichte und Spannungsfunktion. Z. Phys. 142 (1955) 463–475. Zbl0068.40803MR73402
  16. [16] E. Kröner, Kontinuumstheorie der Versetzungen und Eigenspannungen, Ergebnisse der Angewandten Mathematik 5. Springer, Berlin (1958). Zbl0084.40003MR95615
  17. [17] E. Kröner, Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Rat. Mech. Anal. 4 (1960) 273–334. Zbl0090.17601MR126978
  18. [18] E. Kröner and A. Seeger, Nichtlineare Elastizitätstheorie der Versetzungen und Eigenspannungen. Arch. Rat. Mech. Anal. 3 (1959) 97–119. Zbl0085.38601MR106587
  19. [19] D. Kuhlmann-Wilsdorf, Theory of plastic deformation: properties of low energy dislocation structures. Mat. Sci. Eng. A113 (1989) 1. 
  20. [20] E.H. Lee, Elastic-plastic deformation at finite strain. J. Appl. Mech. 36 (1969) 1–6. Zbl0179.55603
  21. [21] A. Mielke and S. Müller, Lower semi-continuity and existence of minimizers in incremental finite-strain elastoplasticity. ZAMM 86 (2006) 233–250. Zbl1102.74006MR2205645
  22. [22] T. Mura, Micromechanics of defects in solids. Kluwer Academic Publishers, Boston (1987). Zbl0652.73010
  23. [23] F.R.N. Nabarro, Theory of crystal dislocations. Oxford University Press, Oxford (1967). 
  24. [24] J. Necas and I. Hlavacek, Mathematical theory of elastic and elastico-plastic bodies: An introduction. Elsevier, Amsterdam (1981). Zbl0448.73009MR600655
  25. [25] P. Neff, On Korn’s first inequality with nonconstant coefficients. Proc. Roy. Soc. Edinb. A 132 (2002) 221–243. Zbl1143.74311MR1884478
  26. [26] J.F. Nye, Some geometrical relations in dislocated crystals. Acta Metall. 1 (1953) 153–162. 
  27. [27] M. Ortiz and E.A. Repetto, Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47 (1999) 397–462. Zbl0964.74012MR1674064
  28. [28] M. Ortiz, E.A. Repetto and L. Stainier, A theory of subgrain dislocation structures. J. Mech. Phys. Solids 48 (2000) 2077–2114. Zbl1001.74007MR1778727
  29. [29] G.P. Parry and M. Silhavy, Elastic scalar invariants in the theory of defective crystals. R. Soc. Lond. Proc., Ser. A, Math. Phys. Eng. Sci. 455 (1999) 4333–4346. Zbl0954.74013MR1809363
  30. [30] Yu.G. Reshetnyak, Liouville’s theorem on conformal mappings for minimal regularity assumptions. Siberian Math. J. 8 (1967) 631–653. Zbl0167.36102
  31. [31] B. Svendsen, Continuum thermodynamic models for crystal plasticity including the effects of geometrically necessary dislocations. J. Mech. Phys. Solids 50 (2002) 1297–1329. Zbl1071.74554MR1903353
  32. [32] R.M. Wald, General Relativity. University of Chicago Press, Chicago (1984). Zbl0549.53001MR757180

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.