0-tight surfaces with boundary and the total curvature of curves in surfaces
Page 1 Next
Wolfgang Kühnel (1981)
Colloquium Mathematicae
Karger, Adolf (1995)
Mathematica Pannonica
Dao Qui Chao, Demeter Krupka (1999)
Mathematica Slovaca
Petrović-Torgašev, Miroslava (1999)
Novi Sad Journal of Mathematics
Miroslava Petrović-Torgašev (2002)
Kragujevac Journal of Mathematics
Miroslava Petrović-Torgašev, L. Verstraelen, Luc Vrancken (1996)
Publications de l'Institut Mathématique
Peter Gilkey, Stana Nikčević (2013)
Publications de l'Institut Mathématique
Amster, P., Keilhauer, G., Mariani, M.C. (1999)
Abstract and Applied Analysis
N. Smale (1987)
Inventiones mathematicae
Jan Peleska (1984)
Aequationes mathematicae
Themis Koufogiorgos (1983)
Annales Polonici Mathematici
İyigün, Esen, Arslan, Kadri, Öztürk, Günay (2008)
Bulletin of the Malaysian Mathematical Sciences Society. Second Series
R. Park, E. Grassmann (1973)
Journal für die reine und angewandte Mathematik
Jan Troják, Jiří Vanžura (1979)
Czechoslovak Mathematical Journal
Yulian T. Tsankov (2005)
Banach Center Publications
Let Mⁿ be a hypersurface in . We prove that two classical Jacobi curvature operators and commute on Mⁿ, n > 2, for all orthonormal pairs (x,y) and for all points p ∈ M if and only if Mⁿ is a space of constant sectional curvature. Also we consider all hypersurfaces with n ≥ 4 satisfying the commutation relation , where , for all orthonormal tangent vectors x,y,z,w and for all points p ∈ M.
Oldřich Kowalski (1968)
Archivum Mathematicum
Kalikakis, Dimitrios E. (2002)
Abstract and Applied Analysis
Chaohao Gu (1988)
Journal für die reine und angewandte Mathematik
Barbara Opozda (1995)
Mathematische Zeitschrift
Šućurović, Emilija (2000)
Publications de l'Institut Mathématique. Nouvelle Série
Page 1 Next