The effect of reduced integration in the Steklov eigenvalue problem
- Volume: 38, Issue: 1, page 27-36
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topArmentano, Maria G.. "The effect of reduced integration in the Steklov eigenvalue problem." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 38.1 (2004): 27-36. <http://eudml.org/doc/244681>.
@article{Armentano2004,
abstract = {In this paper we analyze the effect of introducing a numerical integration in the piecewise linear finite element approximation of the Steklov eigenvalue problem. We obtain optimal order error estimates for the eigenfunctions when this numerical integration is used and we prove that, for singular eigenfunctions, the eigenvalues obtained using this reduced integration are better approximations than those obtained using exact integration when the mesh size is small enough.},
author = {Armentano, Maria G.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite elements; Steklov eigenvalue problem; reduced integration; finite element; eigenfunctions; eigenvalues; error estimates},
language = {eng},
number = {1},
pages = {27-36},
publisher = {EDP-Sciences},
title = {The effect of reduced integration in the Steklov eigenvalue problem},
url = {http://eudml.org/doc/244681},
volume = {38},
year = {2004},
}
TY - JOUR
AU - Armentano, Maria G.
TI - The effect of reduced integration in the Steklov eigenvalue problem
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2004
PB - EDP-Sciences
VL - 38
IS - 1
SP - 27
EP - 36
AB - In this paper we analyze the effect of introducing a numerical integration in the piecewise linear finite element approximation of the Steklov eigenvalue problem. We obtain optimal order error estimates for the eigenfunctions when this numerical integration is used and we prove that, for singular eigenfunctions, the eigenvalues obtained using this reduced integration are better approximations than those obtained using exact integration when the mesh size is small enough.
LA - eng
KW - finite elements; Steklov eigenvalue problem; reduced integration; finite element; eigenfunctions; eigenvalues; error estimates
UR - http://eudml.org/doc/244681
ER -
References
top- [1] M.G. Armentano and R.G. Durán, Mass lumping or not mass lumping for eigenvalue problems. Numer. Methods Partial Differential Equations 19 (2003) 653–664. Zbl1041.65086
- [2] I. Babuska and J. Osborn, Eigenvalue Problems, Handbook of Numerical Analysis, Vol. II. Finite Element Methods (Part. 1) (1991). Zbl0875.65087MR1115240
- [3] U. Banerjee and J. Osborn, Estimation of the effect of numerical integration in finite element eigenvalue approximation. Numer. Math. 56 (1990) 735–762. Zbl0693.65071
- [4] F.B. Belgacem and S.C. Brenner, Some nonstandard finite element estimates with applications to 3D Poisson and Signorini problems. Electron. Trans. Numer. Anal. 12 (2001) 134–148. Zbl0981.65131
- [5] A. Bermudez, R. Rodriguez and D. Santamarina, A finite element solution of an added mass formulation for coupled fluid-solid vibrations. Numer. Math. 87 (2000) 201–227. Zbl0998.76046
- [6] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York (1994). Zbl0804.65101MR1278258
- [7] P. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). Zbl0383.65058MR520174
- [8] P. Grisvard, Elliptic Problems in Nonsmooth Domain. Pitman Boston (1985). Zbl0695.35060MR775683
- [9] H.J.-P. Morand and R. Ohayon, Interactions Fluids-Structures. Rech. Math. Appl. 23 (1985).
- [10] H.F. Weinberger, Variational Methods for Eigenvalue Approximation. SIAM, Philadelphia (1974). Zbl0296.49033MR400004
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.