Spectral methods for one-dimensional kinetic models of granular flows and numerical quasi elastic limit
Giovanni Naldi; Lorenzo Pareschi; Giuseppe Toscani
- Volume: 37, Issue: 1, page 73-90
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] D. Benedetto, E. Caglioti and M. Pulvirenti, A kinetic equation for granular media. Math. Mod. Numer. Anal. 31 (1997) 615–641. Zbl0888.73006
- [2] D. Benedetto, E. Caglioti, J.A. Carrillo and M. Pulvirenti, A non maxwellian steady distribution for one-dimensional granular media. J. Statist. Phys. 91 (1998) 979–990. Zbl0921.60057
- [3] G.A. Bird, Molecular gas dynamics and direct simulation of gas flows. Clarendon Press, Oxford, UK (1994). MR1352466
- [4] C. Bizon, M.D. Shattuck, J.B. Swift and H.L. Swinney, Transport coefficients from granular media from molecular dynamics simulations. Phys. Rev. E 60 (1999) 4340–4351.
- [5] A.V. Bobylev, J.A. Carrillo and I. Gamba, On some properties of kinetic and hydrodynamics equations for inelastic interactions. J. Statist. Phys. 98 (2000) 743–773. Zbl1056.76071
- [6] A.V. Bobylev and K. Nanbu, Theory of collision algorithms for gases and plasmas based on the Boltzmann equation and the Landau-Fokker-Planck equation. Phys. Rev. E 61 (2000) 4576–4586.
- [7] N.V. Brilliantov and T. Pöschel, Granular gases the early stage, in Coherent Structures in Classical Systems, Miguel Rubi Ed., Springer (in press). Zbl0992.76080MR1995113
- [8] C. Buet, A discrete-velocity scheme for the Boltzmann operator of rarefied gas dynamics. Transport Theory Statist. Phys. 25 (1996) 33–60. Zbl0857.76079
- [9] J.A. Carrillo, C. Cercignani and I.M. Gamba, Steady states of a Boltzmann equation for driven granular media. Phys. Rev. E 62 (2000) 7700–7707.
- [10] J.A. Carrillo, R.J. McCann and C. Villani, Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoamericana (to appear). Zbl1073.35127MR2053570
- [11] C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral methods in fluid dynamics. Springer Verlag, New York (1988). Zbl0658.76001MR917480
- [12] P. Degond and B. Lucquin-Desreux, The Fokker-Planck asymptotics of the Boltzmann collision operator in the Coulomb case. Math. Models Methods Appl. Sci. 2 (1992) 167–182. Zbl0755.35091
- [13] L. Desvillettes, On asymptotics of the Boltzmann equation when the collisions become grazing. Transport Theory Statist. Phys. 21 (1992) 259–276. Zbl0769.76059
- [14] L. Desvillettes, C. Graham and S. Melehard, Probabilistic interpretation and numerical approximation of a Kac equation without cutoff. Stochastic Process. Appl. 84 (1999) 115–135. Zbl1009.76081
- [15] Y. Du, H. Li and L.P. Kadanoff, Breakdown of hydrodynamics in a one-dimensional system of inelastic particles. Phys. Rev. Lett. 74 (1995) 1268–1271.
- [16] F. Filbet and L. Pareschi, A numerical method for the accurate solution of the Fokker-Planck-landau equation in the nonhomogeneous case. J. Comput. Phys 179 (2002) 1–26. Zbl1003.82011
- [17] I. Goldhirsch, Scales and kinetics of granular flows. Chaos 9 (1999) 659–672. Zbl1055.76569
- [18] H. Guérin and S. Méléard, Convergence from Boltzmann to Landau process with soft potential and particle approximations. Preprint PMA 698, Paris VI (2001). Zbl1031.82035MR1972130
- [19] L. Kantorovich, On translation of mass (in Russian). Dokl. AN SSSR 37 (1942) 227–229.
- [20] H. Li and G. Toscani, Long–time asymptotics of kinetic models of granular flows. Preprint (2002). Zbl1116.82025
- [21] B. Lucquin-Desreux and S. Mancini, A finite element approximation of grazing collisions. Preprint N. 1034, Laboratoire d’Analyse Numérique, Paris VI (2001). Zbl1053.82029
- [22] S. McNamara and W.R. Young, Kinetics of a one-dimensional granular medium in the quasi–elastic limit. Phys. Fluids A 5 (1993) 34–45.
- [23] K. Nanbu, Direct simulation scheme derived from the Boltzmann equation. J. Phys. Soc. Japan 49 (1980) 2042–2049.
- [24] L. Pareschi, On the fast evaluation of kinetic equations for driven granular flows. Proceedings ENUMATH 2001 (to appear). Zbl1254.76157MR2360746
- [25] L. Pareschi and B. Perthame, A Fourier spectral method for homogeneous Boltzmann equations. Transport Theory Statist. Phys. 25 (1996) 369–383. Zbl0870.76074
- [26] L. Pareschi and G. Russo, Numerical solution of the Boltzmann equation. I. Spectrally accurate approximation of the collision operator. SIAM J. Numer. Anal. 37 (2000) 1217–1245. Zbl1049.76055
- [27] L. Pareschi, G. Toscani and C. Villani, Spectral methods for the non cut-off Boltzmann equation and numerical grazing collision limit. Numer. Math. 93 (2003) 527–548. Electronic DOI 10.1007/s002110100384. Zbl1106.65324
- [28] R. Ramírez, T. Pöschel, N.V. Brilliantov and T. Schwager, Coefficient of restitution of colliding viscoelastic spheres. Phys. Rev. E 60 (1999) 4465–4472.
- [29] F. Rogier and J. Schneider, A direct method for solving the Boltzmann equation. Transport Theory Statist. Phys. 23 (1994) 313–338. Zbl0811.76050
- [30] G. Toscani, One-dimensional kinetic models of granular flows. ESAIM: M2AN 34 (2000) 1277–1291. Zbl0981.76098
- [31] G. Toscani and C. Villani, Probability metrics and uniqueness of the solution to the Boltzmann equation for a Maxwell gas. J. Statist. Phys. 94 (1999) 619–637. Zbl0958.82044
- [32] L.N. Vasershtein, Markov processes on countable product space describing large systems of automata (in Russian). Problemy Peredachi Informatsii 5 (1969) 64–73. Zbl0273.60054
- [33] C. Villani, On a new class of weak solutions for the spatially homogeneous Boltzmann and Landau equations. Arch. Ration. Mech. Anal. 143 (1998) 273–307. Zbl0912.45011
- [34] C. Villani, On the spatially homogeneous Landau equation for Maxwellian molecules. Math. Models Methods Appl. Sci. 8 (1998) 957–983. Zbl0957.82029