Page 1 Next

## Displaying 1 – 20 of 30

Showing per page

### A conservative spectral element method for the approximation of compressible fluid flow

Kybernetika

A method to approximate the Euler equations is presented. The method is a multi-domain approximation, and a variational form of the Euler equations is found by making use of the divergence theorem. The method is similar to that of the Discontinuous-Galerkin method of Cockburn and Shu, but the implementation is constructed through a spectral, multi-domain approach. The method is introduced and is shown to be a conservative scheme. A numerical example is given for the expanding flow around a point...

### A High-Order Unifying Discontinuous Formulation for the Navier-Stokes Equations on 3D Mixed Grids

Mathematical Modelling of Natural Phenomena

The newly developed unifying discontinuous formulation named the correction procedure via reconstruction (CPR) for conservation laws is extended to solve the Navier-Stokes equations for 3D mixed grids. In the current development, tetrahedrons and triangular prisms are considered. The CPR method can unify several popular high order methods including the discontinuous Galerkin and the spectral volume methods into a more efficient differential form....

### A new formulation of the Stokes problem in a cylinder, and its spectral discretization

ESAIM: Mathematical Modelling and Numerical Analysis

We analyze a new formulation of the Stokes equations in three-dimensional axisymmetric geometries, relying on Fourier expansion with respect to the angular variable: the problem for each Fourier coefficient is two-dimensional and has six scalar unknowns, corresponding to the vector potential and the vorticity. A spectral discretization is built on this formulation, which leads to an exactly divergence-free discrete velocity. We prove optimal error estimates.

### A new formulation of the Stokes problem in a cylinder, and its spectral discretization

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We analyze a new formulation of the Stokes equations in three-dimensional axisymmetric geometries, relying on Fourier expansion with respect to the angular variable: the problem for each Fourier coefficient is two-dimensional and has six scalar unknowns, corresponding to the vector potential and the vorticity. A spectral discretization is built on this formulation, which leads to an exactly divergence-free discrete velocity. We prove optimal error estimates.

### A note on the solution of the von Kármán equations using series and Chebyshev spectral methods.

Boundary Value Problems [electronic only]

### A penalty algorithm for the spectral element discretization of the Stokes problem

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The penalty method when applied to the Stokes problem provides a very efficient algorithm for solving any discretization of this problem since it gives rise to a system of two equations where the unknowns are uncoupled. For a spectral or spectral element discretization of the Stokes problem, we prove a posteriori estimates that allow us to optimize the penalty parameter as a function of the discretization parameter. Numerical experiments confirm the interest of this technique.

### A penalty algorithm for the spectral element discretization of the Stokes problem*

ESAIM: Mathematical Modelling and Numerical Analysis

The penalty method when applied to the Stokes problem provides a very efficient algorithm for solving any discretization of this problem since it gives rise to a system of two equations where the unknowns are uncoupled. For a spectral or spectral element discretization of the Stokes problem, we prove a posteriori estimates that allow us to optimize the penalty parameter as a function of the discretization parameter. Numerical experiments confirm the interest of this technique.

### A reduced basis element method for the steady Stokes problem

ESAIM: Mathematical Modelling and Numerical Analysis

The reduced basis element method is a new approach for approximating the solution of problems described by partial differential equations. The method takes its roots in domain decomposition methods and reduced basis discretizations. The basic idea is to first decompose the computational domain into a series of subdomains that are deformations of a few reference domains (or generic computational parts). Associated with each reference domain are precomputed solutions corresponding to the same...

### Automatic simplification of Darcy’s equations with pressure dependent permeability

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider the flow of a viscous incompressible fluid in a rigid homogeneous porous medium provided with mixed boundary conditions. Since the boundary pressure can present high variations, the permeability of the medium also depends on the pressure, so that the model is nonlinear. A posteriori estimates allow us to omit this dependence where the pressure does not vary too much. We perform the numerical analysis of a spectral element discretization of the simplified model. Finally we propose a strategy...

### Évolution d'une singularité de type cusp dans une poche de tourbillon

Journées équations aux dérivées partielles

### Évolution d'une singularité de type cusp dans une poche de tourbillon.

Revista Matemática Iberoamericana

We investigate the evolution of singularities in the boundary of a vortex patch for two-dimensional incompressible Euler equations. We are particularly interested in cusp-like singularities which, according to numerical simulations, are stable. In this paper, we first prove that, unlike the case of a corner-like singularity, the cusp-like singularity generates a lipschitzian velocity. We then state a global result of persistence of conormal regularity with respect to vector fields vanishing at a...

### Low Reynolds number stability of MHD plane Poiseuille flow of an Oldroyd fluid.

International Journal of Mathematics and Mathematical Sciences

### Mathematical analysis of a spectral hyperviscosity LES model for the simulation of turbulent flows

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper presents a model based on spectral hyperviscosity for the simulation of 3D turbulent incompressible flows. One particularity of this model is that the hyperviscosity is active only at the short velocity scales, a feature which is reminiscent of Large Eddy Simulation models. We propose a Fourier–Galerkin approximation of the perturbed Navier–Stokes equations and we show that, as the cutoff wavenumber goes to infinity, the solution of the model converges (up to subsequences) to a weak solution...

### Mathematical analysis of a spectral hyperviscosity LES model for the simulation of turbulent flows

ESAIM: Mathematical Modelling and Numerical Analysis

This paper presents a model based on spectral hyperviscosity for the simulation of 3D turbulent incompressible flows. One particularity of this model is that the hyperviscosity is active only at the short velocity scales, a feature which is reminiscent of Large Eddy Simulation models. We propose a Fourier–Galerkin approximation of the perturbed Navier–Stokes equations and we show that, as the cutoff wavenumber goes to infinity, the solution of the model converges (up to subsequences) to a weak...

### Modelling of natural convection flows with large temperature differences : a benchmark problem for low Mach number solvers. Part 1. Reference solutions

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

There are very few reference solutions in the literature on non-Boussinesq natural convection flows. We propose here a test case problem which extends the well-known De Vahl Davis differentially heated square cavity problem to the case of large temperature differences for which the Boussinesq approximation is no longer valid. The paper is split in two parts: in this first part, we propose as yet unpublished reference solutions for cases characterized by a non-dimensional temperature difference of...

### Modelling of natural convection flows with large temperature differences : a benchmark problem for low Mach number solvers. Part 2. Contributions to the June 2004 conference

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In the second part of the paper, we compare the solutions produced in the framework of the conference “Mathematical and numerical aspects of low Mach number flows” organized by INRIA and MAB in Porquerolles, June 2004, to the reference solutions described in Part 1. We make some recommendations on how to produce good quality solutions, and list a number of pitfalls to be avoided.

### Modelling of Natural Convection Flows with Large Temperature Differences: A Benchmark Problem for Low Mach Number Solvers. Part 2. Contributions to the June 2004 conference

ESAIM: Mathematical Modelling and Numerical Analysis

In the second part of the paper, we compare the solutions produced in the framework of the conference “Mathematical and numerical aspects of low Mach number flows” organized by INRIA and MAB in Porquerolles, June 2004, to the reference solutions described in Part 1. We make some recommendations on how to produce good quality solutions, and list a number of pitfalls to be avoided.

### Modelling of Natural Convection Flows with Large Temperature Differences: A Benchmark Problem for Low Mach Number Solvers. Part 1. Reference Solutions

ESAIM: Mathematical Modelling and Numerical Analysis

There are very few reference solutions in the literature on non-Boussinesq natural convection flows. We propose here a test case problem which extends the well-known De Vahl Davis differentially heated square cavity problem to the case of large temperature differences for which the Boussinesq approximation is no longer valid. The paper is split in two parts: in this first part, we propose as yet unpublished reference solutions for cases characterized by a non-dimensional temperature difference...

### Numerical study of the Davey-Stewartson system

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We deal with numerical analysis and simulations of the Davey-Stewartson equations which model, for example, the evolution of water surface waves. This time dependent PDE system is particularly interesting as a generalization of the 1-d integrable NLS to 2 space dimensions. We use a time splitting spectral method where we give a convergence analysis for the semi-discrete version of the scheme. Numerical results are presented for various blow-up phenomena of the equation, including blowup of defocusing,...

### Numerical study of the Davey-Stewartson system

ESAIM: Mathematical Modelling and Numerical Analysis

We deal with numerical analysis and simulations of the Davey-Stewartson equations which model, for example, the evolution of water surface waves. This time dependent PDE system is particularly interesting as a generalization of the 1-d integrable NLS to 2 space dimensions. We use a time splitting spectral method where we give a convergence analysis for the semi-discrete version of the scheme. Numerical results are presented for various blow-up phenomena of the equation, including blowup of defocusing,...

Page 1 Next