We analyze a new formulation of the Stokes equations in three-dimensional axisymmetric geometries, relying on Fourier expansion with respect to the angular variable: the problem for each Fourier coefficient is two-dimensional and has six scalar unknowns, corresponding to the vector potential and the vorticity. A spectral discretization is built on this formulation, which leads to an exactly divergence-free discrete velocity. We prove optimal error estimates.
We analyze a new formulation of the Stokes equations in
three-dimensional axisymmetric geometries, relying on Fourier expansion with respect to
the angular variable: the problem for each Fourier coefficient is two-dimensional and has
six scalar unknowns, corresponding to the vector potential and the vorticity. A
spectral discretization is built on this formulation, which leads to an exactly
divergence-free discrete velocity. We prove optimal error estimates.
The penalty method when applied to the Stokes problem provides a very efficient algorithm for solving any discretization of this problem since it gives rise to a system of two equations where the unknowns are uncoupled. For a spectral or spectral element discretization of the Stokes problem, we prove a posteriori estimates that allow us to optimize the penalty parameter as a function of the discretization parameter. Numerical experiments confirm the interest of this technique.
The penalty method when applied to the Stokes problem provides a very efficient algorithm for solving any discretization of this problem since it gives rise to a system of two equations where the unknowns are uncoupled. For a spectral or spectral element discretization of the Stokes problem, we prove a posteriori estimates that allow us to optimize the penalty parameter as a function of the discretization parameter. Numerical experiments confirm the interest of this technique.
The reduced basis element method is a new approach for approximating
the solution of problems described by partial differential equations.
The method takes its roots in domain decomposition methods and
reduced basis discretizations. The basic idea is to first decompose
the computational domain into a series of subdomains that are deformations
of a few reference domains (or generic computational parts).
Associated with each reference domain are precomputed solutions
corresponding to the same...
We consider the flow of a viscous incompressible fluid in a rigid homogeneous porous medium provided with mixed boundary conditions. Since the boundary pressure can present high variations, the permeability of the medium also depends on the pressure, so that the model is nonlinear. A posteriori estimates allow us to omit this dependence where the pressure does not vary too much. We perform the numerical analysis of a spectral element discretization of the simplified model. Finally we propose a strategy...
This paper presents a model based on spectral hyperviscosity for the simulation of 3D turbulent incompressible flows. One particularity of this model is that the hyperviscosity is active only at the short velocity scales, a feature which is reminiscent of Large Eddy Simulation models. We propose a Fourier–Galerkin approximation of the perturbed Navier–Stokes equations and we show that, as the cutoff wavenumber goes to infinity, the solution of the model converges (up to subsequences) to a weak solution...
This paper presents a model based on spectral hyperviscosity for the
simulation of 3D turbulent incompressible flows. One particularity of this
model is that the hyperviscosity is active only at the short velocity scales,
a feature which is reminiscent of Large Eddy Simulation models.
We propose a Fourier–Galerkin approximation of the perturbed
Navier–Stokes equations and we show that, as the cutoff wavenumber
goes to infinity, the solution of the model
converges (up to subsequences) to a weak...
There are very few reference solutions in the literature on non-Boussinesq natural convection flows. We propose here a test case problem which extends the well-known De Vahl Davis differentially heated square cavity problem to the case of large temperature differences for which the Boussinesq approximation is no longer valid. The paper is split in two parts: in this first part, we propose as yet unpublished reference solutions for cases characterized by a non-dimensional temperature difference of...
In the second part of the paper, we compare the solutions produced in the framework of the conference “Mathematical and numerical aspects of low Mach number flows” organized by INRIA and MAB in Porquerolles, June 2004, to the reference solutions described in Part 1. We make some recommendations on how to produce good quality solutions, and list a number of pitfalls to be avoided.
In the second part of the paper, we compare the solutions produced
in the framework of the conference “Mathematical and numerical
aspects of low Mach number flows” organized by INRIA and MAB in
Porquerolles, June 2004, to the reference solutions described in
Part 1. We make some recommendations on how to produce good
quality solutions, and list a number of pitfalls to be avoided.
There are very few reference solutions in the literature on
non-Boussinesq natural convection flows. We propose here a test
case problem which extends the well-known De Vahl Davis
differentially heated square cavity problem to the case of large
temperature differences for which the Boussinesq approximation is
no longer valid. The paper is split in two parts: in this first
part, we propose as yet unpublished reference solutions for cases
characterized by a non-dimensional temperature difference...
We deal with numerical analysis and simulations of the Davey-Stewartson equations which model, for example, the evolution of water surface waves. This time dependent PDE system is particularly interesting as a generalization of the 1-d integrable NLS to 2 space dimensions. We use a time splitting spectral method where we give a convergence analysis for the semi-discrete version of the scheme. Numerical results are presented for various blow-up phenomena of the equation, including blowup of defocusing,...
We deal with numerical analysis and simulations of the Davey-Stewartson equations
which model, for example, the evolution of water surface waves.
This time dependent PDE system is particularly interesting as a generalization
of the 1-d integrable NLS to 2 space dimensions.
We use a time splitting spectral method where
we give a convergence analysis for the semi-discrete version of the scheme.
Numerical results are presented for various blow-up phenomena of
the equation, including blowup of defocusing,...