On the asymptotic properties of a simple estimate of the Mode

Christophe Abraham; Gérard Biau; Benoît Cadre

ESAIM: Probability and Statistics (2004)

  • Volume: 8, page 1-11
  • ISSN: 1292-8100

Abstract

top
We consider an estimate of the mode θ of a multivariate probability density f with support in d using a kernel estimate f n drawn from a sample X 1 , , X n . The estimate θ n is defined as any x in { X 1 , , X n } such that f n ( x ) = max i = 1 , , n f n ( X i ) . It is shown that θ n behaves asymptotically as any maximizer θ ^ n of f n . More precisely, we prove that for any sequence ( r n ) n 1 of positive real numbers such that r n and r n d log n / n 0 , one has r n θ n - θ ^ n 0 in probability. The asymptotic normality of θ n follows without further work.

How to cite

top

Abraham, Christophe, Biau, Gérard, and Cadre, Benoît. "On the asymptotic properties of a simple estimate of the Mode." ESAIM: Probability and Statistics 8 (2004): 1-11. <http://eudml.org/doc/245948>.

@article{Abraham2004,
abstract = {We consider an estimate of the mode $\theta $ of a multivariate probability density $f$ with support in $\mathbb \{R\}^d$ using a kernel estimate $f_n$ drawn from a sample $X_1, \hdots , X_n$. The estimate $\theta _n$ is defined as any $x$ in $\lbrace X_1, \hdots , X_n\rbrace $ such that $f_n(x)=\max _\{i=1, \hdots ,n\} f_n(X_i)$. It is shown that $\theta _n$ behaves asymptotically as any maximizer $\{\hat\{\theta \}\}_n$ of $f_n$. More precisely, we prove that for any sequence $(r_n)_\{n\ge 1\}$ of positive real numbers such that $r_n\rightarrow \infty $ and $r_n^d\log n/n\rightarrow 0$, one has $r_n\,\Vert \theta _n-\{\hat\{\theta \}\}_n\Vert \rightarrow 0$ in probability. The asymptotic normality of $\theta _n$ follows without further work.},
author = {Abraham, Christophe, Biau, Gérard, Cadre, Benoît},
journal = {ESAIM: Probability and Statistics},
keywords = {multivariate probability density; mode; kernel estimate; central limit theorem},
language = {eng},
pages = {1-11},
publisher = {EDP-Sciences},
title = {On the asymptotic properties of a simple estimate of the Mode},
url = {http://eudml.org/doc/245948},
volume = {8},
year = {2004},
}

TY - JOUR
AU - Abraham, Christophe
AU - Biau, Gérard
AU - Cadre, Benoît
TI - On the asymptotic properties of a simple estimate of the Mode
JO - ESAIM: Probability and Statistics
PY - 2004
PB - EDP-Sciences
VL - 8
SP - 1
EP - 11
AB - We consider an estimate of the mode $\theta $ of a multivariate probability density $f$ with support in $\mathbb {R}^d$ using a kernel estimate $f_n$ drawn from a sample $X_1, \hdots , X_n$. The estimate $\theta _n$ is defined as any $x$ in $\lbrace X_1, \hdots , X_n\rbrace $ such that $f_n(x)=\max _{i=1, \hdots ,n} f_n(X_i)$. It is shown that $\theta _n$ behaves asymptotically as any maximizer ${\hat{\theta }}_n$ of $f_n$. More precisely, we prove that for any sequence $(r_n)_{n\ge 1}$ of positive real numbers such that $r_n\rightarrow \infty $ and $r_n^d\log n/n\rightarrow 0$, one has $r_n\,\Vert \theta _n-{\hat{\theta }}_n\Vert \rightarrow 0$ in probability. The asymptotic normality of $\theta _n$ follows without further work.
LA - eng
KW - multivariate probability density; mode; kernel estimate; central limit theorem
UR - http://eudml.org/doc/245948
ER -

References

top
  1. [1] C. Abraham, G. Biau and B. Cadre, Simple estimation of the mode of a multivariate density. Canadian J. Statist. 31 (2003) 23-34. Zbl1035.62046MR1985502
  2. [2] L. Devroye, Recursive estimation of the mode of a multivariate density. Canadian J. Statist. 7 (1979) 159-167. Zbl0444.60023MR570537
  3. [3] L. Devroye, A Course in Density Estimation. Birkhäuser, Boston (1987). Zbl0617.62043MR891874
  4. [4] W.F. Eddy, Optimum kernel estimates of the mode. Ann. Statist. 8 (1980) 870-882. Zbl0438.62027MR572631
  5. [5] V.D. Konakov, On asymptotic normality of the sample mode of multivariate distributions. Theory Probab. Appl. 18 (1973) 836-842. Zbl0325.62033MR336874
  6. [6] J. Leclerc and D. Pierre-Loti-Viaud, Vitesse de convergence presque sûre de l’estimateur à noyau du mode. C. R. Acad. Sci. Paris 331 (2000) 637-640. Zbl0961.62043
  7. [7] A. Mokkadem and M. Pelletier, A law of the iterated logarithm for the kernel mode estimator, ESAIM: Probab. Statist. 7 (2003) 1-21. Zbl1013.62032MR1956072
  8. [8] E. Parzen, On estimation of a probability density function and mode. Ann. Math. Statist. 33 (1962) 1065-1076. Zbl0116.11302MR143282
  9. [9] D. Pollard, Convergence of Stochastic Processes. Springer–Verlag, New York (1984). Zbl0544.60045
  10. [10] J.P. Romano, On weak convergence and optimality of kernel density estimates of the mode. Ann. Statist. 16 (1988) 629-647. Zbl0658.62053MR947566
  11. [11] M. Rosenblatt, Remarks on some nonparametric estimates of a density function. Ann. Math. Statist. 27 (1956) 832-837. Zbl0073.14602MR79873
  12. [12] T.W. Sager, Estimating modes and isopleths. Comm. Statist. – Theory Methods 12 (1983) 529-557. Zbl0513.62049
  13. [13] M. Samanta, Nonparametric estimation of the mode of a multivariate density. South African Statist. J. 7 (1973) 109-117. Zbl0268.62015MR331618
  14. [14] B. Silverman, Weak and strong uniform consistency of the kernel estimate of a density and its derivatives. Ann. Statist. 6 (1978) 177-184. Zbl0376.62024MR471166
  15. [15] P. Vieu, A note on density mode estimation. Statist. Probab. Lett. 26 (1996) 297-307. Zbl0847.62024MR1393913

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.