Relating automata-theoretic hierarchies to complexity-theoretic hierarchies
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2002)
- Volume: 36, Issue: 1, page 29-42
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topSelivanov, Victor L.. "Relating automata-theoretic hierarchies to complexity-theoretic hierarchies." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 36.1 (2002): 29-42. <http://eudml.org/doc/245018>.
@article{Selivanov2002,
abstract = {We show that some natural refinements of the Straubing and Brzozowski hierarchies correspond (via the so called leaf-languages) step by step to similar refinements of the polynomial-time hierarchy. This extends a result of Burtschik and Vollmer on relationship between the Straubing and the polynomial hierarchies. In particular, this applies to the Boolean hierarchy and the plus-hierarchy.},
author = {Selivanov, Victor L.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {automata theory; complexity theory; leaf-languages; Straubing hierarchy; Brzozowski hierarchy; typed Boolean hierarchy; fine hierarchy; polynomial-time hierarchy},
language = {eng},
number = {1},
pages = {29-42},
publisher = {EDP-Sciences},
title = {Relating automata-theoretic hierarchies to complexity-theoretic hierarchies},
url = {http://eudml.org/doc/245018},
volume = {36},
year = {2002},
}
TY - JOUR
AU - Selivanov, Victor L.
TI - Relating automata-theoretic hierarchies to complexity-theoretic hierarchies
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2002
PB - EDP-Sciences
VL - 36
IS - 1
SP - 29
EP - 42
AB - We show that some natural refinements of the Straubing and Brzozowski hierarchies correspond (via the so called leaf-languages) step by step to similar refinements of the polynomial-time hierarchy. This extends a result of Burtschik and Vollmer on relationship between the Straubing and the polynomial hierarchies. In particular, this applies to the Boolean hierarchy and the plus-hierarchy.
LA - eng
KW - automata theory; complexity theory; leaf-languages; Straubing hierarchy; Brzozowski hierarchy; typed Boolean hierarchy; fine hierarchy; polynomial-time hierarchy
UR - http://eudml.org/doc/245018
ER -
References
top- [1] J.L. Balcázar, J. Díaz and J. Gabarró, Structural Complexity I, Vol. 11 of EATCS Monographs on Theoretical Computer Science. Springer-Verlag (1988). Zbl0638.68040MR1047862
- [2] J.L. Balcázar, J. Díaz and J. Gabarró, Structural Complexity II, Vol. 11 of EATCS Monographs on Theoretical Computer Science. Springer-Verlag (1990). Zbl0746.68032MR1056474
- [3] B. Borchert, On the acceptance power of regular languages. Theoret. Comput. Sci. 148 (1995) 207-225. Zbl0873.68121MR1355587
- [4] B. Borchert, D. Kuske and F. Stephan, On existentially first-order definable languages and their relation to . RAIRO: Theoret. Informatics Appl. 33 (1999) 259-269. Zbl0949.03035MR1728426
- [5] D.P. Bovet, P. Crescenzi and R. Silvestri, A uniform approach to define complexity classes. Theoret. Comput. Sci. 104 (1992) 263-283. Zbl0754.68049MR1186181
- [6] J.A. Brzozowski and R Knast, The dot-depth hierarchy of star-free languages is infinite. J. Comput. Systems Sci. 16 (1978) 37-55. Zbl0368.68074MR471451
- [7] H.-J. Burtschick and H. Vollmer, Lindström Quatifiers and Leaf Language Definability. Int. J. Found. Comput. Sci. 9 (1998) 277-294. Zbl1319.68104
- [8] E. Hemaspaandra, L. Hemaspaandra and H. Hempel, What’s up with downward collapse: Using the easy-hard technique to link Boolean and polynomial hierarchy collapses. Compl. Theory Column 21, ACM-SIGACT Newslett. 29 (1998) 10-22.
- [9] U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer and K.W. Wagner, On the power of polynomial time bit-reductions, in Proc. 8th Structure in Complexity Theory (1993) 200-207. MR1310801
- [10] U. Hertrampf, H. Vollmer and K.W. Wagner, On the power of number-theoretic operations with respect to counting, in Proc. 10th Structure in Complexity Theory (1995) 299-314.
- [11] U. Hertrampf, H. Vollmer and K.W. Wagner, On balanced vs. unbalanced computation trees. Math. Systems Theory 29 (1996) 411-421. Zbl0853.68097MR1389468
- [12] B. Jenner, P. McKenzie and D. Therien, Logspace and logtime leaf languages. Inform. and Comput. 129 (1996) 21-33. Zbl0864.68057MR1408830
- [13] K. Kuratowski and A. Mostowski, Set Theory. North Holland (1967). Zbl0165.01701MR229526
- [14] J. Köbler, U. Shöning and K.W. Wagner, The difference and truth-table hierarchies for NP. Dep. of Informatics, Koblenz, Preprint 7 (1986).
- [15] R. McNaughton and S. Papert, Counter-free automata. MIT Press, Cambridge, Massachusets (1971). Zbl0232.94024MR371538
- [16] D. Perrin and J.-E. Pin, First order logic and star-free sets. J. Comput. Systems Sci. 32 (1986) 393-406. Zbl0618.03015MR858236
- [17] J.-E. Pin and P. Weil, Polynomial closure and unambiguous product. Theory Computing Systems 30 (1997) 383-422. Zbl0872.68119MR1450862
- [18] S. Reith and K.W. Wagner, On Boolean lowness and Boolean highness, in Proc. 4-th Ann. Int. Computing and Combinatorics Conf. Springer, Berlin, Lecture Notes in Comput. Sci. 1449 (1998) 147-156. Zbl0912.68049MR1683382
- [19] V.L. Selivanov, Two refinements of the polynomial hierarchy, in Proc. of Symposium on Theor. Aspects of Computer Science STACS-94. Springer, Berlin, Lecture Notes in Comput. Sci. 775 (1994) 439-448. Zbl0941.03544MR1288556
- [20] V.L. Selivanov, Refining the polynomial hierarchy, Preprint No. 9. The University of Heidelberg, Chair of Mathematical Logic (1994) 20 p. MR1763384
- [21] V.L. Selivanov, Fine hierarchies and Boolean terms. J. Symb. Logic 60 (1995) 289-317. Zbl0824.03022MR1324514
- [22] V.L. Selivanov, Refining the polynomial hierarchy. Algebra and Logic 38 (1999) 456-475 (Russian, there is an English translation). Zbl0932.03052MR1763384
- [23] V.L. Selivanov, A logical approach to decidability of hierarchies of regular star-free languages, in Proc. of 18-th Int. Symposium on Theor. Aspects of Computer Science STACS-2001 in Dresden, Germany. Springer, Berlin, Lecture Notes in Comput. Sci. 2010 (2001) 539-550 Zbl0976.03042MR1892340
- [24] V.L. Selivanov and A.G. Shukin, On hierarchies of regular star-free languages (in Russian). Preprint 69 of A.P. Ershov Institute of Informatics Systems (2000) 28 p.
- [25] A.G. Shukin, Difference hierarchies of regular languages. Comput. Systems 161 (1998) 141-155 (in Russian). Zbl0932.03053MR1778013
- [26] H. Schmitz and K.W. Wagner, The Boolean hierarchy over level 1/2 of the Straubing–Therien hierarchy, Technical Report 201. Inst. für Informatik, Univ. Würzburg available at http://www.informatik.uni-wuerzburg.de.
- [27] W. Thomas, Classifying regular events in symbolic logic. J. Comput. Systems Sci. 25 (1982) 360-376. Zbl0503.68055MR684265
- [28] N.K. Vereshchagin, Relativizable and non-relativizable theorems in the polynomial theory of algorithms. Izvestiya Rossiiskoi Akademii Nauk 57 (1993) 51-90 (in Russian). Zbl0822.68035MR1230967
- [29] G. Wechsung and K. Wagner, On the Boolean closure of NP, in Proc. of the 1985 Int. Conf. on Fundamentals of Computation theory. Springer-Verlag, Lecture Notes in Comput. Sci. 199 (1985) 485-493. Zbl0581.68043MR821265
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.