Asymptotic behaviour of the probability-weighted moments and penultimate approximation

Jean Diebolt; Armelle Guillou; Rym Worms

ESAIM: Probability and Statistics (2003)

  • Volume: 7, page 219-238
  • ISSN: 1292-8100

Abstract

top
The P.O.T. (Peaks-Over-Threshold) approach consists of using the Generalized Pareto Distribution (GPD) to approximate the distribution of excesses over a threshold. We use the probability-weighted moments to estimate the parameters of the approximating distribution. We study the asymptotic behaviour of these estimators (in particular their asymptotic bias) and also the functional bias of the GPD as an estimate of the distribution function of the excesses. We adapt penultimate approximation results to the case where parameters are estimated.

How to cite

top

Diebolt, Jean, Guillou, Armelle, and Worms, Rym. "Asymptotic behaviour of the probability-weighted moments and penultimate approximation." ESAIM: Probability and Statistics 7 (2003): 219-238. <http://eudml.org/doc/245050>.

@article{Diebolt2003,
abstract = {The P.O.T. (Peaks-Over-Threshold) approach consists of using the Generalized Pareto Distribution (GPD) to approximate the distribution of excesses over a threshold. We use the probability-weighted moments to estimate the parameters of the approximating distribution. We study the asymptotic behaviour of these estimators (in particular their asymptotic bias) and also the functional bias of the GPD as an estimate of the distribution function of the excesses. We adapt penultimate approximation results to the case where parameters are estimated.},
author = {Diebolt, Jean, Guillou, Armelle, Worms, Rym},
journal = {ESAIM: Probability and Statistics},
keywords = {extreme values; domain of attraction; excesses; generalized Pareto distribution; probability-weighted moments; penultimate approximation},
language = {eng},
pages = {219-238},
publisher = {EDP-Sciences},
title = {Asymptotic behaviour of the probability-weighted moments and penultimate approximation},
url = {http://eudml.org/doc/245050},
volume = {7},
year = {2003},
}

TY - JOUR
AU - Diebolt, Jean
AU - Guillou, Armelle
AU - Worms, Rym
TI - Asymptotic behaviour of the probability-weighted moments and penultimate approximation
JO - ESAIM: Probability and Statistics
PY - 2003
PB - EDP-Sciences
VL - 7
SP - 219
EP - 238
AB - The P.O.T. (Peaks-Over-Threshold) approach consists of using the Generalized Pareto Distribution (GPD) to approximate the distribution of excesses over a threshold. We use the probability-weighted moments to estimate the parameters of the approximating distribution. We study the asymptotic behaviour of these estimators (in particular their asymptotic bias) and also the functional bias of the GPD as an estimate of the distribution function of the excesses. We adapt penultimate approximation results to the case where parameters are estimated.
LA - eng
KW - extreme values; domain of attraction; excesses; generalized Pareto distribution; probability-weighted moments; penultimate approximation
UR - http://eudml.org/doc/245050
ER -

References

top
  1. [1] A. Balkema and L. de Haan, Residual life time at a great age. Ann. Probab. 2 (1974) 792-801. Zbl0295.60014
  2. [2] J. Beirlant, G. Dierckx, Y. Goegebeur and G. Matthys, Tail index estimation and an exponential regression model. Extremes 2 (1999) 177-200. Zbl0947.62034MR1771132
  3. [3] J.P. Cohen, Convergence rates for the ultimate and penultimate approximations in extreme-value theory. Adv. Appl. Prob. 14 (1982) 833-854. Zbl0496.62019MR677559
  4. [4] A.L.M. Dekkers and L. de Haan, On the estimation of the extreme-value index and large quantile estimation. Ann. Statist. 17 (1989) 1795-1832. Zbl0699.62028MR1026314
  5. [5] J. Diebolt, V. Durbec, M.A. El Aroui and B. Villain, Estimation of extreme quantiles: Empirical tools for methods assessment and comparison. Int. J. Reliability Quality Safety Engrg. 7 (2000) 75-94. 
  6. [6] J. Diebolt and M.A. El Aroui, On the use of Peaks over Threshold methods for estimating out-of-sample quantiles. Comput. Statist. Data Anal. (to appear). Zbl1101.62337MR1910022
  7. [7] H. Drees, A general class of estimators of the extreme value index. J. Statist. Plann. Inf. 66 (1998) 95-112. Zbl0929.62034MR1616999
  8. [8] U. Einmahl and D.M. Mason, Approximation to permutation and exchangeable processes. J. Theor. Probab. 5 (1992) 101-126. Zbl0791.60037MR1144729
  9. [9] A. Feuerverger and P. Hall, Estimating a tail exponent by modelling departure from a Pareto distribution. Ann. Statist. 27 (1999) 760-781. Zbl0942.62059MR1714709
  10. [10] J. Galambos, Asymptotic theory of extreme order statistics. Krieger, Malabar, Florida (1978). Zbl0634.62044MR489334
  11. [11] B.V. Gnedenko, Sur la distribution limite du terme maximum d’une série aléatoire. Ann. Math. 44 (1943) 423-453. Zbl0063.01643
  12. [12] M.I. Gomes, Penultimate limiting forms in extreme value theory. Ann. Inst. Stat. Math. 36 (1984) 71-85. Zbl0561.62015MR752007
  13. [13] I. Gomes and L. de Haan, Approximation by penultimate extreme value distributions. Extremes 2 (2000) 71-85. Zbl0947.60019MR1772401
  14. [14] M.I. Gomes and D.D. Pestana, Non standard domains of attraction and rates of convergence. John Wiley & Sons (1987) 467-477. Zbl0618.62023MR900238
  15. [15] L. de Haan and H. Rootzén, On the estimation of high quantiles. J. Statist. Plann. Infer. 35 (1993) 1-13. Zbl0770.62026MR1220401
  16. [16] J. Hosking and J. Wallis, Parameter and quantile estimation for the Generalized Pareto Distribution. Technometrics 29 (1987) 339-349. Zbl0628.62019MR906643
  17. [17] J. Pickands III, Statistical inference using extreme order statistics. Ann. Statist. 3 (1975) 119-131. Zbl0312.62038MR423667
  18. [18] G.R. Shorack and J.A. Wellner, Empirical Processes with Applications to Statistics. Wiley, New York (1986). Zbl1170.62365MR838963
  19. [19] R.L. Smith, Estimating tails of probability distributions. Ann. Statist. 15 (1987) 1174-1207. Zbl0642.62022MR902252
  20. [20] R. Worms, Vitesses de convergence pour l’approximation des queues de distributions. Thèse de doctorat de l’Université de Marne-la-Vallée (2000). 
  21. [21] R. Worms, Penultimate approximation for the distribution of the excesses. ESAIM: P&S 6 (2002) 21-31. Zbl0992.60056MR1888136

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.