Asymptotic behaviour of the probability-weighted moments and penultimate approximation
Jean Diebolt; Armelle Guillou; Rym Worms
ESAIM: Probability and Statistics (2003)
- Volume: 7, page 219-238
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A. Balkema and L. de Haan, Residual life time at a great age. Ann. Probab. 2 (1974) 792-801. Zbl0295.60014
- [2] J. Beirlant, G. Dierckx, Y. Goegebeur and G. Matthys, Tail index estimation and an exponential regression model. Extremes 2 (1999) 177-200. Zbl0947.62034MR1771132
- [3] J.P. Cohen, Convergence rates for the ultimate and penultimate approximations in extreme-value theory. Adv. Appl. Prob. 14 (1982) 833-854. Zbl0496.62019MR677559
- [4] A.L.M. Dekkers and L. de Haan, On the estimation of the extreme-value index and large quantile estimation. Ann. Statist. 17 (1989) 1795-1832. Zbl0699.62028MR1026314
- [5] J. Diebolt, V. Durbec, M.A. El Aroui and B. Villain, Estimation of extreme quantiles: Empirical tools for methods assessment and comparison. Int. J. Reliability Quality Safety Engrg. 7 (2000) 75-94.
- [6] J. Diebolt and M.A. El Aroui, On the use of Peaks over Threshold methods for estimating out-of-sample quantiles. Comput. Statist. Data Anal. (to appear). Zbl1101.62337MR1910022
- [7] H. Drees, A general class of estimators of the extreme value index. J. Statist. Plann. Inf. 66 (1998) 95-112. Zbl0929.62034MR1616999
- [8] U. Einmahl and D.M. Mason, Approximation to permutation and exchangeable processes. J. Theor. Probab. 5 (1992) 101-126. Zbl0791.60037MR1144729
- [9] A. Feuerverger and P. Hall, Estimating a tail exponent by modelling departure from a Pareto distribution. Ann. Statist. 27 (1999) 760-781. Zbl0942.62059MR1714709
- [10] J. Galambos, Asymptotic theory of extreme order statistics. Krieger, Malabar, Florida (1978). Zbl0634.62044MR489334
- [11] B.V. Gnedenko, Sur la distribution limite du terme maximum d’une série aléatoire. Ann. Math. 44 (1943) 423-453. Zbl0063.01643
- [12] M.I. Gomes, Penultimate limiting forms in extreme value theory. Ann. Inst. Stat. Math. 36 (1984) 71-85. Zbl0561.62015MR752007
- [13] I. Gomes and L. de Haan, Approximation by penultimate extreme value distributions. Extremes 2 (2000) 71-85. Zbl0947.60019MR1772401
- [14] M.I. Gomes and D.D. Pestana, Non standard domains of attraction and rates of convergence. John Wiley & Sons (1987) 467-477. Zbl0618.62023MR900238
- [15] L. de Haan and H. Rootzén, On the estimation of high quantiles. J. Statist. Plann. Infer. 35 (1993) 1-13. Zbl0770.62026MR1220401
- [16] J. Hosking and J. Wallis, Parameter and quantile estimation for the Generalized Pareto Distribution. Technometrics 29 (1987) 339-349. Zbl0628.62019MR906643
- [17] J. Pickands III, Statistical inference using extreme order statistics. Ann. Statist. 3 (1975) 119-131. Zbl0312.62038MR423667
- [18] G.R. Shorack and J.A. Wellner, Empirical Processes with Applications to Statistics. Wiley, New York (1986). Zbl1170.62365MR838963
- [19] R.L. Smith, Estimating tails of probability distributions. Ann. Statist. 15 (1987) 1174-1207. Zbl0642.62022MR902252
- [20] R. Worms, Vitesses de convergence pour l’approximation des queues de distributions. Thèse de doctorat de l’Université de Marne-la-Vallée (2000).
- [21] R. Worms, Penultimate approximation for the distribution of the excesses. ESAIM: P&S 6 (2002) 21-31. Zbl0992.60056MR1888136