Estimation of second order parameters using probability weighted moments
ESAIM: Probability and Statistics (2012)
- Volume: 16, page 97-113
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A. Balkema and L. de Haan, Residual life time at a great age. Ann. Probab.2 (1974) 792–801. Zbl0295.60014
- [2] F. Caeiro, M.I. Gomes and D. Pestana, A note on the asymptotic variance at optimal levels of a bias-corrected Hill estimator. Stat. Probab. Lett.79 (2009) 295–303. Zbl1155.62037MR2493012
- [3] G. Ciuperca and C. Mercadier, Semi-parametric estimation for heavy tailed distributions. Extremes13 (2010) 55–87. Zbl1226.62053MR2593951
- [4] J. Diebolt, A. Guillou and R. Worms, Asymptotic behaviour of the probability-weighted moments and penultimate approximation. ESAIM : PS 7 (2003) 217–236. Zbl1017.60060MR1987787
- [5] J. Diebolt, A. Guillou and I. Rached, Approximation of the distribution of excesses through a generalized probability-weighted moments method. J. Statist. Plann. Inference137 (2007) 841–857. Zbl1107.60027MR2301720
- [6] J. Diebolt, A. Guillou and I. Rached, Approximation of the distribution of excesses through a generalized probability-weighted moments method. J. Statist. Plann. Inference137 (2007) 841–857. Zbl1107.60027MR2301720
- [7] H. Drees and E. Kaufmann, Selecting the optimal sample fraction in univariate extreme value estimation. Stoc. Proc. Appl.75 (1998) 149–172. Zbl0926.62013MR1632189
- [8] M.I. Fraga Alves, L. de Haan and T. Lin, Estimation of the parameter controlling the speed of convergence in extreme value theory. Math. Methods Stat.12 (2003) 155–176. MR2025356
- [9] M.I. Fraga Alves, M.I. Gomes and L. de Haan, A new class of semi-parametric estimators of the second order parameter. Portugaliae Mathematica60 (2003) 193–213. Zbl1042.62050MR1984031
- [10] M.I. Fraga Alves, L. de Haan and T. Lin, Third order extended regular variation. Publ. Inst. Math.80 (2006) 109–120. Zbl1164.26304MR2281909
- [11] M.I. Fraga Alves, M.I. Gomes, L. de Haan and C. Neves, A note on second order conditions in extreme value theory : linking general and heavy tail conditions. REVSTAT Stat. J.5 (2007) 285–304. Zbl1149.62040MR2365929
- [12] M.I. Gomes and J. Martins, “Asymptotically unbiased” estimators of the tail index based on external estimation of the second order parameter. Extremes5 (2002) 5–31. Zbl1037.62044MR1947785
- [13] M.I. Gomes, L. de Haan and L. Peng, Semi-parametric estimation of the second order parameter in statistics of extremes. Extremes5 (2002) 387–414. Zbl1039.62027MR2002125
- [14] P. Hall and A.H. Welsh, Adaptive estimates of parameters of regular variation. Ann. Stat.13 (1985) 331–341. Zbl0605.62033MR773171
- [15] J. Hosking and J. Wallis, Parameter and quantile estimation for the generalized Pareto distribution. Technometrics29 (1987) 339–349. Zbl0628.62019MR906643
- [16] L. Peng, Asymptotically unbiased estimator for the extreme value index. Statist. Prob. Lett.38 (1998) 107–115. Zbl1246.62129MR1627906
- [17] J. Pickands III, Statistical inference using extreme order statistics. Ann. Statist.3 (1975) 119–131. Zbl0312.62038MR423667
- [18] J.P. Raoult and R. Worms, Rate of convergence for the generalized Pareto approximation of the excesses. Adv. Applied Prob.35 (2003) 1007–1027. Zbl1044.60041MR2014267
- [19] R.J. Serfling, Approximation Theorems of Mathematical Statistics. Wiley & Son (1980). Zbl1001.62005MR595165
- [20] A.W. van der Vaart, Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics (2000). Zbl0910.62001
- [21] R. Worms, Penultimate approximation for the distribution of the excesses. ESAIM : PS 6 (2002) 21–31. Zbl0992.60056MR1888136