Penultimate approximation for the distribution of the excesses
ESAIM: Probability and Statistics (2002)
- Volume: 6, page 21-31
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topWorms, Rym. "Penultimate approximation for the distribution of the excesses." ESAIM: Probability and Statistics 6 (2002): 21-31. <http://eudml.org/doc/245324>.
@article{Worms2002,
abstract = {Let $F$ be a distribution function (d.f) in the domain of attraction of an extreme value distribution $\{ H_\{\gamma \} \}$; it is well-known that $F_u(x)$, where $F_u$ is the d.f of the excesses over $u$, converges, when $u$ tends to $s_+(F)$, the end-point of $F$, to $G_\{\gamma \}(\frac\{x\}\{\sigma (u)\})$, where $G_\{\gamma \}$ is the d.f. of the Generalized Pareto Distribution. We provide conditions that ensure that there exists, for $\gamma >-1$, a function $\Lambda $ which verifies $\lim _\{u \rightarrow s_+(F)\} \Lambda (u) =\gamma $ and is such that $\Delta (u)= \sup _\{x \in [0,s_+(F)-u[\} |\bar\{F\}_u(x) - \bar\{G\}_\{\Lambda (u)\} (x/ \sigma (u))| $ converges to $0$ faster than $d(u)=\sup _\{x \in [0,s_+(F)-u[\} |\bar\{F\}_u(x) - \bar\{G\}_\{\gamma \}(x/ \sigma (u))|$.},
author = {Worms, Rym},
journal = {ESAIM: Probability and Statistics},
keywords = {generalized Pareto distribution; excesses; penultimate approximation; rate of convergence},
language = {eng},
pages = {21-31},
publisher = {EDP-Sciences},
title = {Penultimate approximation for the distribution of the excesses},
url = {http://eudml.org/doc/245324},
volume = {6},
year = {2002},
}
TY - JOUR
AU - Worms, Rym
TI - Penultimate approximation for the distribution of the excesses
JO - ESAIM: Probability and Statistics
PY - 2002
PB - EDP-Sciences
VL - 6
SP - 21
EP - 31
AB - Let $F$ be a distribution function (d.f) in the domain of attraction of an extreme value distribution ${ H_{\gamma } }$; it is well-known that $F_u(x)$, where $F_u$ is the d.f of the excesses over $u$, converges, when $u$ tends to $s_+(F)$, the end-point of $F$, to $G_{\gamma }(\frac{x}{\sigma (u)})$, where $G_{\gamma }$ is the d.f. of the Generalized Pareto Distribution. We provide conditions that ensure that there exists, for $\gamma >-1$, a function $\Lambda $ which verifies $\lim _{u \rightarrow s_+(F)} \Lambda (u) =\gamma $ and is such that $\Delta (u)= \sup _{x \in [0,s_+(F)-u[} |\bar{F}_u(x) - \bar{G}_{\Lambda (u)} (x/ \sigma (u))| $ converges to $0$ faster than $d(u)=\sup _{x \in [0,s_+(F)-u[} |\bar{F}_u(x) - \bar{G}_{\gamma }(x/ \sigma (u))|$.
LA - eng
KW - generalized Pareto distribution; excesses; penultimate approximation; rate of convergence
UR - http://eudml.org/doc/245324
ER -
References
top- [1] A. Balkema and L. de Haan, Residual life time at great age. Ann. Probab. 2 (1974) 792-801. Zbl0295.60014MR359049
- [2] C.M. Goldie, N.H. Bingham and J.L. Teugels, Regular variation. Cambridge University Press (1987). Zbl0617.26001MR898871
- [3] J.P. Cohen, Convergence rates for the ultimate and penultimate approximations in extreme-value theory. Adv. Appl. Prob. 14 (1982) 833-854. Zbl0496.62019MR677559
- [4] R.A. Fisher and L.H.C. Tippet, Limiting forms of the frequency of the largest or smallest member of a sample. Proc. Cambridge Phil. Soc. 24 (1928) 180-190. Zbl54.0560.05JFM54.0560.05
- [5] M.I. Gomes, Penultimate limiting forms in extreme value theory. Ann. Inst. Stat. Math. 36 (1984) 71-85. Zbl0561.62015MR752007
- [6] I. Gomes and L. de Haan, Approximation by penultimate extreme value distributions. Extremes 2 (2000) 71-85. Zbl0947.60019MR1772401
- [7] M.I. Gomes and D.D. Pestana, Non standard domains of attraction and rates of convergence. John Wiley & Sons (1987) 467-477. Zbl0618.62023MR900238
- [8] J. Pickands III, Statistical inference using extreme order statistics. Ann. Stat. 3 (1975) 119-131. Zbl0312.62038MR423667
- [9] J.-P. Raoult and R. Worms, Rate of convergence for the Generalized Pareto approximation of the excesses (submitted). Zbl1044.60041
- [10] R. Worms, Vitesse de convergence de l’approximation de Pareto Généralisée de la loi des excès. Preprint Université de Marne-la-Vallée (10/2000).
- [11] R. Worms, Vitesses de convergence pour l’approximation des queues de distributions Ph.D. Thesis Université de Marne-la-Vallée (2000).
Citations in EuDML Documents
top- Jean Diebolt, Armelle Guillou, Rym Worms, Asymptotic behaviour of the probability-weighted moments and penultimate approximation
- Jean Diebolt, Armelle Guillou, Rym Worms, Asymptotic behaviour of the probability-weighted moments and penultimate approximation
- Julien Worms, Rym Worms, Estimation of second order parameters using probability weighted moments
- Julien Worms, Rym Worms, Estimation of second order parameters using probability weighted moments
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.