D0L sequence equivalence is in for fixed alphabets
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2008)
- Volume: 42, Issue: 2, page 361-374
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topRuohonen, Keijo. "D0L sequence equivalence is in $P$ for fixed alphabets." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 42.2 (2008): 361-374. <http://eudml.org/doc/245083>.
@article{Ruohonen2008,
abstract = {A new algorithm is presented for the D0L sequence equivalence problem which, when the alphabets are fixed, works in time polynomial in the rest of the input data. The algorithm uses a polynomial encoding of words and certain well-known properties of $\mathbb \{Z\}$-rational sequences.},
author = {Ruohonen, Keijo},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {D0L system; equivalence problem; polynomial-time algorithm; polynomial encoding of words; -rational sequences},
language = {eng},
number = {2},
pages = {361-374},
publisher = {EDP-Sciences},
title = {D0L sequence equivalence is in $P$ for fixed alphabets},
url = {http://eudml.org/doc/245083},
volume = {42},
year = {2008},
}
TY - JOUR
AU - Ruohonen, Keijo
TI - D0L sequence equivalence is in $P$ for fixed alphabets
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2008
PB - EDP-Sciences
VL - 42
IS - 2
SP - 361
EP - 374
AB - A new algorithm is presented for the D0L sequence equivalence problem which, when the alphabets are fixed, works in time polynomial in the rest of the input data. The algorithm uses a polynomial encoding of words and certain well-known properties of $\mathbb {Z}$-rational sequences.
LA - eng
KW - D0L system; equivalence problem; polynomial-time algorithm; polynomial encoding of words; -rational sequences
UR - http://eudml.org/doc/245083
ER -
References
top- [1] M.H. Albert and J. Lawrence, A proof of Ehrenfeucht’s conjecture. Theoret. Comput. Sci. 41 (1985) 121–123. Zbl0602.68066MR841029
- [2] J. Berstel and M. Mignotte, Deux problèmes décidables des suites récurrentes linéaires. Bull. Soc. Math. France 104 (1976) 175–184. Zbl0329.10009MR414475
- [3] J. Berstel and C. Reutenauer, Rational Series and Their Languages. Springer-Verlag (1988). Zbl0668.68005MR971022
- [4] V.D. Blondel and N. Portier, The presence of a zero in an integer linear recurrent sequence is NP-hard to decide. Linear Algebra Appl. 351–352 (2002) 91–98. Zbl1007.93047MR1917474
- [5] K. Čulik II and I. Friš, The decidability of the equivalence problem for D0L-systems. Inform. Control 35 (1977) 20–39. Zbl0365.68074MR449030
- [6] K. Čulik II and J. Karhumäki, A new proof for the D0L sequence equivalence problem and its implications, in The Book of L, edited by G. Rozenberg and A. Salomaa. Springer-Verlag (1986) 63–74. Zbl0586.68066
- [7] A. Ehrenfeucht and G. Rozenberg, Elementary homomorphisms and a solution of the D0L sequence equivalence problem. Theoret. Comput. Sci. 7 (1978) 169–183. Zbl0407.68085MR509015
- [8] A. Ehrenfeucht and G. Rozenberg, On a bound for the D0L sequence equivalence problem. Theoret. Comput. Sci. 12 (1980) 339–342. Zbl0456.68085MR589315
- [9] V. Halava, T. Harju, M. Hirvensalo and J. Karhumäki, Skolem’s Problem — On the Border Between Decidability and Undecidability. TUCS Technical Report No 683 (2005) (submitted).
- [10] G. Hansel, Une démonstration simple du théorème de Skolem-Mahler-Lech. Theoret. Comput. Sci. 244 (1986) 91–98. Zbl0605.10007MR847905
- [11] J. Honkala, A short solution for the HDT0L sequence equivalence problem. Theoret. Comput. Sci. 244 (2000) 267–270. Zbl0945.68104MR1774399
- [12] J. Honkala, A polynomial bound for certain cases of the D0L sequence equivalence problem. Theoret. Comput. Syst. 34 (2001) 263–272. Zbl0988.68106MR1823124
- [13] J. Honkala, The equivalence problem of polynomially bounded D0L systems — a bound depending only on the size of the alphabet. Theoret. Comput. Syst. 36 (2003) 89–103. Zbl1039.68067MR1941845
- [14] J. Honkala, An -bound for the ultimate equivalence problem of certain D0L systems over an -letter alphabet. J. Comput. Syst. Sci. 71 (2005) 506–519. Zbl1082.68051MR2178078
- [15] J. Honkala, A new bound for the D0L sequence equivalence problem. Acta Inform. 43 (2007) 419–429. Zbl1106.68060MR2282860
- [16] J. Karhumäki, On the equivalence problem for binary D0L systems. Inform. Control 50 (1981) 276–284. Zbl0497.68048MR691593
- [17] D.J. Lewis, Diophantine equations: -adic methods, in Studies in Number Theory, edited by W.J. LeVeque. MAA Studies in Mathematics. Vol. 6 MAA (1969) 25–75. Zbl0218.10035MR241359
- [18] W. Magnus, On a theorem of Marshall Hall. Ann. Math. 40 (1954) 764–768. Zbl0022.31403
- [19] G. Rozenberg and A. Salomaa, The Mathematical Theory of L Systems. Academic Press (1980). Zbl0508.68031MR561711
- [20] Handbook of Formal Languages. Vols. 1–3, edited by G. Rozenberg and A. Salomaa. Springer–Verlag (1997). Zbl0866.68057MR1469992
- [21] K. Ruohonen, Test sets for iterated morphisms. Mathematics Report No 49. Tampere University of Technology (1986). Zbl0612.68052
- [22] K. Ruohonen, Equivalence problems for regular sets of word morphisms, in The Book of L, edited by G. Rozenberg and A. Salomaa. Springer-Verlag (1986) 393–401. Zbl0612.68052
- [23] K. Ruohonen, Solving equivalence of recurrent sequences in groups by polynomial manipulation. Fund. Inform. 38 (1999) 135–148. Zbl0935.68134MR1718116
- [24] K. Ruohonen, Explicit test sets for iterated morphisms in free monoids and metabelian groups. Theoret. Comput. Sci. 330 (2005) 171 –191. Zbl1078.68094MR2112773
- [25] A. Salomaa and M. Soittola, Automata-Theoretic Aspects of Formal Power Series. Springer–Verlag (1978). Zbl0377.68039MR483721
- [26] W.M. Schmidt, The zero multiplicity of linear recurrence sequences. Acta Math. 182 (1999) 243–282. Zbl0974.11013MR1710183
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.