Unique continuation property near a corner and its fluid-structure controllability consequences
ESAIM: Control, Optimisation and Calculus of Variations (2009)
- Volume: 15, Issue: 2, page 279-294
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] T. Chatelain and A. Henrot, Some results about Schiffer’s conjectures. Inverse Problems 15 (1999) 647–658. Zbl0932.35202MR1696934
- [2] P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics 24. Pitman Advanced Publishing Program, Boston-London-Melbourne (1985). Zbl0695.35060MR775683
- [3] V.A. Kozlov, V.A. Kondratiev and V.G. Mazya, On sign variation and the absence of strong zeros of solutions of elliptic equations. Math. USSR Izvestiya 34 (1990) 337–353. Zbl0701.35062MR998299
- [4] J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and applications. Springer-Verlag, Berlin (1972). Zbl0223.35039
- [5] J.-L. Lions and E. Zuazua, Approximate controllability of a hydro-elastic coupled system. ESAIM: COCV 1 (1995) 1–15. Zbl0878.93034MR1382513
- [6] V.A. Kozlov, V.G. Mazya and J. Rossmann, Elliptic boundary value problems in domains with point singularities, Mathematical Surveys and Monographs 52. AMS, Providence (1997). Zbl0947.35004MR1469972
- [7] A. Osses and J.-P. Puel, Approximate controllability for a hydro-elastic model in a rectangular domain, in Optimal Control of partial Differential Equations (Chemnitz, 1998), Internat. Ser. Numer. Math. 133, Birkhäuser, Basel (1999) 231–243. Zbl0934.35022MR1723989
- [8] A. Osses and J.-P. Puel, Approximate controllability of a linear model in solid-fluid interaction. ESAIM: COCV 4 (1999) 497–513. Zbl0931.35014MR1713527
- [9] S. Williams, A partial solution of the Pompeiu problem. Math. Anal. 223 (1976) 183–190. Zbl0329.35045MR414904
- [10] S. Williams, Analyticity of the boundary of Lipschitz domains without the Pompeiu property. Indiana Univ. Math. J. 30 (1981) 357–369. Zbl0439.35046MR611225