Approximate controllability for a linear model of fluid structure interaction
ESAIM: Control, Optimisation and Calculus of Variations (1999)
- Volume: 4, page 497-513
- ISSN: 1292-8119
Access Full Article
topHow to cite
topOsses, Axel, and Puel, Jean-Pierre. "Approximate controllability for a linear model of fluid structure interaction." ESAIM: Control, Optimisation and Calculus of Variations 4 (1999): 497-513. <http://eudml.org/doc/90551>.
@article{Osses1999,
author = {Osses, Axel, Puel, Jean-Pierre},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {nonsmooth domains; unique continuation property; eigenvalue problem},
language = {eng},
pages = {497-513},
publisher = {EDP Sciences},
title = {Approximate controllability for a linear model of fluid structure interaction},
url = {http://eudml.org/doc/90551},
volume = {4},
year = {1999},
}
TY - JOUR
AU - Osses, Axel
AU - Puel, Jean-Pierre
TI - Approximate controllability for a linear model of fluid structure interaction
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 1999
PB - EDP Sciences
VL - 4
SP - 497
EP - 513
LA - eng
KW - nonsmooth domains; unique continuation property; eigenvalue problem
UR - http://eudml.org/doc/90551
ER -
References
top- [1] C. Berenstein, An inverse spectral theorem and its relation to the Pompeiu problem. J. Anal. Math. 37 ( 1980) 128-144. Zbl0449.35024MR583635
- [2] C. Berenstein, The Pompeiu problem, what's new?, Deville R. et al. (Ed.), Complex analysis, harmonic analysis and applications. Proceedings of a conference in honour of the retirement of Roger Gay, June 7-9, 1995, Bordeaux, France. Harlow: Longman. Pitman Res. Notes Math. Ser. 347 ( 1996) 1-11. Zbl0858.31005MR1402019
- [3] E. Beretta and M. Vogelius, An inverse problem originating from magnetohydrodynamics. III: Domains with corners of arbitrary angles. Asymptotic Anal. 11 ( 1995) 289-315. Zbl0853.76093MR1356817
- [4] H. Brezis, Analyse Fonctionnelle, Théorie et Applications, Collection Math. Appl. Pour la Maîtrise, Masson, Paris ( 1983). Zbl0511.46001MR697382
- [5] L. Brown, B.M. Schreiber and B.A. Taylor, Spectral synthesis and the Pompeiu problem. Ann. Inst. Fourier 23 ( 1973) 125-154. Zbl0265.46044MR352492
- [6] P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, 24. Pitman, Boston-London-Melbourne ( 1985). Zbl0695.35060MR775683
- [7] J.-L. Lions, Remarques sur la contrôlabilité approchée, Control of distributed Systems, Span.-Fr. Days, Malaga/Spain 1990, Grupo Anal. Mat. Apl. Univ. Malaga 3 ( 1990) 77-87. Zbl0752.93037MR1108876
- [8] J.-L. Lionsand E. Magenes, Problèmes Aux Limites Non Homogènes et Applications, Vols. I, II, III, Dunod, Paris ( 1968). Zbl0165.10801
- [9] J.-L. Lionsand E. Zuazua, Approximate controllability of a hydro-elastic coupled system. ESAIM: Contr. Optim. Calc. Var. 1( 1995) 1-15. Zbl0878.93034MR1382513
- [10] A. Osses, A rotated direction multiplier technique. Applications to the controllability of waves, elasticity and tangential Stokes control, SIAM J. Cont. Optim., to appear. Zbl0997.93013
- [11] A. Osses and J.-P. Puel, Approximate controllability of a linear model in solid-nuid interaction in a rectangle. to appear.
- [12] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York. Appl. Math. Sci. 44 ( 1983). Zbl0516.47023MR710486
- [13] J. Serrin, A symmetry problem in potential theory. Arch. Rational. Mech. Anal. 43 ( 1971) 304-318. Zbl0222.31007MR333220
- [14] R. Temam, Navier-Stokes Equations, North-Holland, Amsterdam ( 1977). Zbl0383.35057
- [15] M. Vogelius, An inverse problem for the equation ∆u = - cu - d. Ann. Inst. Fourier, 44 ( 1994) 1181-1209 Zbl0813.35136MR1306552
- [16] S.A. Williams, Analyticity of the boundary for Lipschitz domains without the Pompeiu property. Indiana Univ. Math. J. 30 ( 1981) 357-369. Zbl0439.35046MR611225
Citations in EuDML Documents
top- Axel Osses, Jean-Pierre Puel, Unique continuation property near a corner and its fluid-structure controllability consequences
- Scott Hansen, Exact controllability of an elastic membrane coupled with a potential fluid
- Axel Osses, Jean-Pierre Puel, Unique continuation property near a corner and its fluid-structure controllability consequences
- Muriel Boulakia, Axel Osses, Local null controllability of a two-dimensional fluid-structure interaction problem
- Muriel Boulakia, Axel Osses, Local null controllability of a two-dimensional fluid-structure interaction problem
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.