Approximate controllability for a linear model of fluid structure interaction

Axel Osses; Jean-Pierre Puel

ESAIM: Control, Optimisation and Calculus of Variations (1999)

  • Volume: 4, page 497-513
  • ISSN: 1292-8119

How to cite

top

Osses, Axel, and Puel, Jean-Pierre. "Approximate controllability for a linear model of fluid structure interaction." ESAIM: Control, Optimisation and Calculus of Variations 4 (1999): 497-513. <http://eudml.org/doc/90551>.

@article{Osses1999,
author = {Osses, Axel, Puel, Jean-Pierre},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {nonsmooth domains; unique continuation property; eigenvalue problem},
language = {eng},
pages = {497-513},
publisher = {EDP Sciences},
title = {Approximate controllability for a linear model of fluid structure interaction},
url = {http://eudml.org/doc/90551},
volume = {4},
year = {1999},
}

TY - JOUR
AU - Osses, Axel
AU - Puel, Jean-Pierre
TI - Approximate controllability for a linear model of fluid structure interaction
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 1999
PB - EDP Sciences
VL - 4
SP - 497
EP - 513
LA - eng
KW - nonsmooth domains; unique continuation property; eigenvalue problem
UR - http://eudml.org/doc/90551
ER -

References

top
  1. [1] C. Berenstein, An inverse spectral theorem and its relation to the Pompeiu problem. J. Anal. Math. 37 ( 1980) 128-144. Zbl0449.35024MR583635
  2. [2] C. Berenstein, The Pompeiu problem, what's new?, Deville R. et al. (Ed.), Complex analysis, harmonic analysis and applications. Proceedings of a conference in honour of the retirement of Roger Gay, June 7-9, 1995, Bordeaux, France. Harlow: Longman. Pitman Res. Notes Math. Ser. 347 ( 1996) 1-11. Zbl0858.31005MR1402019
  3. [3] E. Beretta and M. Vogelius, An inverse problem originating from magnetohydrodynamics. III: Domains with corners of arbitrary angles. Asymptotic Anal. 11 ( 1995) 289-315. Zbl0853.76093MR1356817
  4. [4] H. Brezis, Analyse Fonctionnelle, Théorie et Applications, Collection Math. Appl. Pour la Maîtrise, Masson, Paris ( 1983). Zbl0511.46001MR697382
  5. [5] L. Brown, B.M. Schreiber and B.A. Taylor, Spectral synthesis and the Pompeiu problem. Ann. Inst. Fourier 23 ( 1973) 125-154. Zbl0265.46044MR352492
  6. [6] P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, 24. Pitman, Boston-London-Melbourne ( 1985). Zbl0695.35060MR775683
  7. [7] J.-L. Lions, Remarques sur la contrôlabilité approchée, Control of distributed Systems, Span.-Fr. Days, Malaga/Spain 1990, Grupo Anal. Mat. Apl. Univ. Malaga 3 ( 1990) 77-87. Zbl0752.93037MR1108876
  8. [8] J.-L. Lionsand E. Magenes, Problèmes Aux Limites Non Homogènes et Applications, Vols. I, II, III, Dunod, Paris ( 1968). Zbl0165.10801
  9. [9] J.-L. Lionsand E. Zuazua, Approximate controllability of a hydro-elastic coupled system. ESAIM: Contr. Optim. Calc. Var. 1( 1995) 1-15. Zbl0878.93034MR1382513
  10. [10] A. Osses, A rotated direction multiplier technique. Applications to the controllability of waves, elasticity and tangential Stokes control, SIAM J. Cont. Optim., to appear. Zbl0997.93013
  11. [11] A. Osses and J.-P. Puel, Approximate controllability of a linear model in solid-nuid interaction in a rectangle. to appear. 
  12. [12] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York. Appl. Math. Sci. 44 ( 1983). Zbl0516.47023MR710486
  13. [13] J. Serrin, A symmetry problem in potential theory. Arch. Rational. Mech. Anal. 43 ( 1971) 304-318. Zbl0222.31007MR333220
  14. [14] R. Temam, Navier-Stokes Equations, North-Holland, Amsterdam ( 1977). Zbl0383.35057
  15. [15] M. Vogelius, An inverse problem for the equation ∆u = - cu - d. Ann. Inst. Fourier, 44 ( 1994) 1181-1209 Zbl0813.35136MR1306552
  16. [16] S.A. Williams, Analyticity of the boundary for Lipschitz domains without the Pompeiu property. Indiana Univ. Math. J. 30 ( 1981) 357-369. Zbl0439.35046MR611225

Citations in EuDML Documents

top
  1. Axel Osses, Jean-Pierre Puel, Unique continuation property near a corner and its fluid-structure controllability consequences
  2. Scott Hansen, Exact controllability of an elastic membrane coupled with a potential fluid
  3. Axel Osses, Jean-Pierre Puel, Unique continuation property near a corner and its fluid-structure controllability consequences
  4. Muriel Boulakia, Axel Osses, Local null controllability of a two-dimensional fluid-structure interaction problem
  5. Muriel Boulakia, Axel Osses, Local null controllability of a two-dimensional fluid-structure interaction problem

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.