Approximate controllability of a hydro-elastic coupled system

Jacques-Louis Lions; Enrique Zuazua

ESAIM: Control, Optimisation and Calculus of Variations (1996)

  • Volume: 1, page 1-15
  • ISSN: 1292-8119

How to cite

top

Lions, Jacques-Louis, and Zuazua, Enrique. "Approximate controllability of a hydro-elastic coupled system." ESAIM: Control, Optimisation and Calculus of Variations 1 (1996): 1-15. <http://eudml.org/doc/90421>.

@article{Lions1996,
author = {Lions, Jacques-Louis, Zuazua, Enrique},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Hydroelasticity; approximate controllability; coupled system; spectral decomposition; generic spectral properties; Stokes system},
language = {eng},
pages = {1-15},
publisher = {EDP Sciences},
title = {Approximate controllability of a hydro-elastic coupled system},
url = {http://eudml.org/doc/90421},
volume = {1},
year = {1996},
}

TY - JOUR
AU - Lions, Jacques-Louis
AU - Zuazua, Enrique
TI - Approximate controllability of a hydro-elastic coupled system
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 1996
PB - EDP Sciences
VL - 1
SP - 1
EP - 15
LA - eng
KW - Hydroelasticity; approximate controllability; coupled system; spectral decomposition; generic spectral properties; Stokes system
UR - http://eudml.org/doc/90421
ER -

References

top
  1. [1] J.H. Albert: Genericity of simple eigenvalues for elliptic pde's, Proc. AMS, 48(2), 1975, 413-418. Zbl0302.35071MR385934
  2. [2] H. Cohen and S. I. Rubinow: Some mathematical topics in Biology, Proc. Symp. on System Theory Polytechnic Press, New York ( 1965), 321-337. 
  3. [3] C. Fabre, J. P. Puel and E. Zuazua: Contrôlabilité approchée de l'équation de la chaleur semilinéaire, C.R.A.S. Paris, 315, ( 1992), 807-812. Zbl0770.35009MR1184907
  4. [4] O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow, , Gordon and Breach Science Publishers, New York, 1987. Zbl0184.52603MR254401
  5. [5] H. Lamb: Hydrodynamics, 6th ed., Cambridge Univ. Press, 1932. Zbl0828.01012MR1317348JFM58.1298.04
  6. [6] J.L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969. Zbl0189.40603MR259693
  7. [7] J.L. Lions: Remarks on approximate controllability, I. Analyse Math., 59, 1992, 103-116. Zbl0806.35101MR1226954
  8. [8] J.L. Lions and E. Magenes: Problèmes aux limites non homogènes et applications, vol. 1, Dunod, Paris, 1968. Zbl0165.10801MR247243
  9. [9] A.M. Micheletti: Perturbazione dello spettro dell operatore di Laplace, in relazione ad una variazione del campo, Ann. Scuola Norm. Sup. Pisa, 26(3), 1972, 151-169. Zbl0234.35073MR367480
  10. [10] K. Uhlenbeck: Generic properties of eigenfunctions, American J. Math., 98(4),1 1976, 1059-1078. Zbl0355.58017MR464332

Citations in EuDML Documents

top
  1. Axel Osses, Jean-Pierre Puel, Approximate controllability for a linear model of fluid structure interaction
  2. Axel Osses, Jean-Pierre Puel, Unique continuation property near a corner and its fluid-structure controllability consequences
  3. Scott Hansen, Exact controllability of an elastic membrane coupled with a potential fluid
  4. Axel Osses, Jean-Pierre Puel, Unique continuation property near a corner and its fluid-structure controllability consequences
  5. Axel Osses, Jean-Pierre Puel, Approximate controllability for a linear model of fluid structure interaction
  6. Hussain A. El-Saify, G. M. Bahaa, Optimal control for n × n coupled systems governed by Petrowsky type equations with control-constrained and infinite number of variables
  7. Jean-Michel Coron, Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations
  8. Yannick Privat, Mario Sigalotti, The squares of the Laplacian-Dirichlet eigenfunctions are generically linearly independent
  9. Jean-Michel Coron, Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations

NotesEmbed ?

top

You must be logged in to post comments.