# Central-Upwind Schemes for the Saint-Venant System

Alexander Kurganov; Doron Levy

ESAIM: Mathematical Modelling and Numerical Analysis (2010)

- Volume: 36, Issue: 3, page 397-425
- ISSN: 0764-583X

## Access Full Article

top## Abstract

top## How to cite

topKurganov, Alexander, and Levy, Doron. "Central-Upwind Schemes for the Saint-Venant System." ESAIM: Mathematical Modelling and Numerical Analysis 36.3 (2010): 397-425. <http://eudml.org/doc/194110>.

@article{Kurganov2010,

abstract = {
We present one- and two-dimensional central-upwind schemes
for approximating solutions of the Saint-Venant system
with source terms due to bottom topography.
The Saint-Venant system has steady-state solutions
in which nonzero flux gradients are exactly balanced by
the source terms. It is a challenging problem to preserve
this delicate balance with numerical schemes.
Small perturbations of these states are also very difficult
to compute. Our approach is based on extending semi-discrete central schemes for
systems of hyperbolic conservation laws to balance laws.
Special attention is paid to the discretization of the source
term such as to preserve stationary steady-state
solutions. We also prove that the second-order version of our
schemes preserves the nonnegativity of the height of the water.
This important feature allows one to compute solutions for problems
that include dry areas.
},

author = {Kurganov, Alexander, Levy, Doron},

journal = {ESAIM: Mathematical Modelling and Numerical Analysis},

keywords = {Saint-Venant system; shallow water equations;
high-order central-upwind schemes; balance laws
conservation laws; source terms.; high-order central-upwind schemes; balance laws; conservation laws; source terms},

language = {eng},

month = {3},

number = {3},

pages = {397-425},

publisher = {EDP Sciences},

title = {Central-Upwind Schemes for the Saint-Venant System},

url = {http://eudml.org/doc/194110},

volume = {36},

year = {2010},

}

TY - JOUR

AU - Kurganov, Alexander

AU - Levy, Doron

TI - Central-Upwind Schemes for the Saint-Venant System

JO - ESAIM: Mathematical Modelling and Numerical Analysis

DA - 2010/3//

PB - EDP Sciences

VL - 36

IS - 3

SP - 397

EP - 425

AB -
We present one- and two-dimensional central-upwind schemes
for approximating solutions of the Saint-Venant system
with source terms due to bottom topography.
The Saint-Venant system has steady-state solutions
in which nonzero flux gradients are exactly balanced by
the source terms. It is a challenging problem to preserve
this delicate balance with numerical schemes.
Small perturbations of these states are also very difficult
to compute. Our approach is based on extending semi-discrete central schemes for
systems of hyperbolic conservation laws to balance laws.
Special attention is paid to the discretization of the source
term such as to preserve stationary steady-state
solutions. We also prove that the second-order version of our
schemes preserves the nonnegativity of the height of the water.
This important feature allows one to compute solutions for problems
that include dry areas.

LA - eng

KW - Saint-Venant system; shallow water equations;
high-order central-upwind schemes; balance laws
conservation laws; source terms.; high-order central-upwind schemes; balance laws; conservation laws; source terms

UR - http://eudml.org/doc/194110

ER -

## References

top- A. Abdulle, Fourth Order Chebyshev Methods with Recurrence Relation. SIAM J. Sci. Comput.23 (2002) 2041-2054.
- A. Abdulle and A. Medovikov, Second Order Chebyshev Methods Based on Orthogonal Polynomials. Numer. Math.90 (2001) 1-18.
- P. Arminjon and M.-C. Viallon, Généralisation du schéma de Nessyahu-Tadmor pour une équation hyperbolique à deux dimensions d'espace. C. R. Acad. Sci. Paris Sér. I Math.t. 320 (1995) 85-88.
- P. Arminjon, M.-C. Viallon and A. Madrane, A Finite Volume Extension of the Lax-Friedrichs and Nessyahu-Tadmor Schemes for Conservation Laws on Unstructured Grids. Int. J. Comput. Fluid Dyn.9 (1997) 1-22.
- E. Audusse, M.O. Bristeau and B. Perthame, Kinetic Schemes for Saint-Venant Equations With Source Terms on Unstructured Grids. INRIA Report RR-3989 (2000).
- A. Bermudez and M.E. Vasquez, Upwind Methods for Hyperbolic Conservation Laws With Source Terms. Comput. & Fluids23 (1994) 1049-1071.
- F. Bianco, G. Puppo and G. Russo, High Order Central Schemes for Hyperbolic Systems of Conservation Laws. SIAM J. Sci. Comput.21 (1999) 294-322.
- T. Buffard, T. Gallouët and J.-M. Hérard, A Sequel to a Rough Godunov Scheme. Application to Real Gas Flows. Comput. & Fluids29-7 (2000) 813-847.
- S. Gottlieb, C.-W. Shu and E. Tadmor, High Order Time Discretization Methods with the Strong Stability Property. SIAM Rev.43 (2001) 89-112.
- K.O. Friedrichs and P.D. Lax, Systems of Conservation Equations with a Convex Extension. Proc. Nat. Acad. Sci. USA68 (1971) 1686-1688.
- T. Gallouët, J.-M. Hérard and N. Seguin, Some Approximate Godunov Schemes to Compute Shallow-Water Equations with Topography. Computers and Fluids (to appear).
- J.F. Gerbeau and B. Perthame, Derivation of Viscous Saint-Venant System for Laminar Shallow Water; Numerical Validation. Discrete Contin. Dynam. Systems Ser. B1 (2001) 89-102.
- L. Gosse, A Well-Balanced Scheme Using Non-Conservative Products Designed for Hyperbolic Systems of Conservation Laws With Source Terms. Math. Models Methods Appl. Sci.11 (2001) 339-365.
- A. Harten, B. Engquist, S. Osher and S.R. Chakravarthy, Uniformly High Order Accurate Essentially Non-Oscillatory Schemes III. J. Comput. Phys.71 (1987) 231-303.
- G.-S. Jiang and E. Tadmor, Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws. SIAM J. Sci. Comput.19 (1998) 1892-1917.
- S. Jin, A Steady-state Capturing Method for Hyperbolic System with Geometrical Source Terms. ESAIM: M2AN35 (2001) 631-645.
- A. Kurganov and D. Levy, A Third-Order Semi-Discrete Scheme for Conservation Laws and Convection-Diffusion Equations. SIAM J. Sci. Comput.22 (2000) 1461-1488.
- A. Kurganov, S. Noelle and G. Petrova, Semi-Discrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton-Jacobi Equations. SIAM J. Sci. Comput.23 (2001) 707-740.
- A. Kurganov and G. Petrova, A Third-Order Semi-Discrete Genuinely Multidimensional Central Scheme for Hyperbolic Conservation Laws and Related Problems. Numer. Math.88 (2001) 683-729.
- A. Kurganov and G. Petrova, Central Schemes and Contact Discontinuities. ESAIM: M2AN34 (2000) 1259-1275.
- A. Kurganov and E. Tadmor, New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection-Diffusion Equations. J. Comput. Phys.160 (2000) 214-282.
- B. van Leer, Towards the Ultimate Conservative Difference Scheme, V. A Second Order Sequel to Godunov's Method. J. Comput. Phys.32 (1979) 101-136.
- R.J. LeVeque, Balancing Source Terms and Flux Gradients in High-Resolution Godunov Methods: The Quasi-Steady Wave-Propagation Algorithm. J. Comput. Phys.146 (1998) 346-365.
- R.J. LeVeque and D.S. Bale, Wave Propagation Methods for Conservation Laws with Source Terms, Hyperbolic Problems: Theory, Numerics, Applications, Vol. II, Zürich (1998). Birkhäuser, Basel, Internat. Ser. Numer. Math.130 (1999) 609-618.
- D. Levy, G. Puppo and G. Russo, Central WENO Schemes for Hyperbolic Systems of Conservation Laws. ESAIM: M2AN33 (1999) 547-571.
- D. Levy, G. Puppo and G. Russo, Compact Central WENO Schemes for Multidimensional Conservation Laws. SIAM J. Sci. Comput.22 (2000) 656-672.
- S.F. Liotta, V. Romano and G. Russo, Central Schemes for Systems of Balance Laws, Hyperbolic Problems: Theory, Numerics, Applications, Vol. II, Zürich (1998). Birkhäuser, Basel, Internat. Ser. Numer. Math.130 (1999) 651-660.
- X.-D. Liu and S. Osher, Nonoscillatory High Order Accurate Self Similar Maximum Principle Satisfying Shock Capturing Schemes. I. SIAM J. Numer. Anal.33 (1996) 760-779.
- X.-D. Liu, S. Osher and T. Chan, Weighted Essentially Non-Oscillatory Schemes. J. Comput. Phys.115 (1994) 200-212.
- X.-D. Liu and E. Tadmor, Third Order Nonoscillatory Central Scheme for Hyperbolic Conservation Laws. Numer. Math.79 (1998) 397-425.
- A. Medovikov, High Order Explicit Methods for Parabolic Equations. BIT38 (1998) 372-390.
- H. Nessyahu and E. Tadmor, Non-Oscillatory Central Differencing for Hyperbolic Conservation Laws. J. Comput. Phys.87 (1990) 408-463.
- S. Noelle, A Comparison of Third and Second Order Accurate Finite Volume Schemes for the Two-Dimensional Compressible Euler Equations, Hyperbolic Problems: Theory, Numerics, Applications, Vol. I, Zürich (1998). Birkhäuser, Basel, Internat. Ser. Numer. Math.129 (1999) 757-766.
- B. Perthame and C. Simeoni, A Kinetic Scheme for the Saint-Venant System with a Source Term. École Normale Supérieure, Report DMA-01-13. Calcolo38 (2001) 201-301.
- G. Russo, Central Schemes for Balance Laws, Proceedings of HYP2000. Magdeburg (to appear).
- A.J.C. de Saint-Venant, Théorie du mouvement non-permanent des eaux, avec application aux crues des rivières et à l'introduction des marées dans leur lit. C. R. Acad. Sci. Paris73 (1871) 147-154.
- C.-W. Shu, Total-Variation-Diminishing Time Discretizations. SIAM J. Sci. Comput.6 (1988) 1073-1084.
- C.-W. Shu and S. Osher, Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes. J. Comput. Phys.77 (1988) 439-471.
- P.K. Sweby, High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws. SIAM J. Numer. Anal.21 (1984) 995-1011.
- E. Tadmor, Convenient Total Variation Diminishing Conditions for Nonlinear Difference Schemes. SIAM J. Numer. Anal.25 (1988) 1002-1014.

## Citations in EuDML Documents

top- Steve Bryson, Yekaterina Epshteyn, Alexander Kurganov, Guergana Petrova, Well-balanced positivity preserving central-upwind scheme on triangular grids for the Saint-Venant system
- Tomás Chacón Rebollo, Antonio Domínguez Delgado, Enrique D. Fernández Nieto, An entropy-correction free solver for non-homogeneous shallow water equations
- Smadar Karni, Eduard Kirr, Alexander Kurganov, Guergana Petrova, Compressible two-phase flows by central and upwind schemes
- Smadar Karni, Eduard Kirr, Alexander Kurganov, Guergana Petrova, Compressible two-phase flows by central and upwind schemes
- Tomás Chacón Rebollo, Antonio Domínguez Delgado, Enrique D. Fernández Nieto, An entropy-correction free solver for non-homogeneous shallow water equations
- Steve Bryson, Yekaterina Epshteyn, Alexander Kurganov, Guergana Petrova, Well-balanced positivity preserving central-upwind scheme on triangular grids for the Saint-Venant system
- Alina Chertock, Alexander Kurganov, On a hybrid finite-volume-particle method
- Alina Chertock, Alexander Kurganov, On a hybrid finite-volume-particle method
- Jorge Balbás, Smadar Karni, A central scheme for shallow water flows along channels with irregular geometry
- Jorge Balbás, Gerardo Hernandez-Duenas, A positivity preserving central scheme for shallow water flows in channels with wet-dry states

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.