The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A set oriented approach to global optimal control”

A set oriented approach to global optimal control

Oliver Junge, Hinke M. Osinga (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We describe an algorithm for computing the value function for “all source, single destination” discrete-time nonlinear optimal control problems together with approximations of associated globally optimal control strategies. The method is based on a set oriented approach for the discretization of the problem in combination with graph-theoretic techniques. The central idea is that a discretization of phase space of the given problem leads to an (all source, single destination)...

Some applications of optimal control theory of distributed systems

Alfredo Bermudez (2002)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

In this paper we present some applications of the J.-L. Lions’ optimal control theory to real life problems in engineering and environmental sciences. More precisely, we deal with the following three problems: sterilization of canned foods, optimal management of waste-water treatment plants and noise control

Coplanar control of a satellite around the earth

Jean-Baptiste Caillau, Joseph Noailles (2001)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We investigate the minimum time transfer of a satellite around the Earth. Using an optimal control model, we study the controllability of the system and propose a geometrical analysis of the optimal command structure. Furthermore, in order to solve the problem numerically, a new parametric technique is introduced for which convergence properties are established.