Symplectic Pontryagin approximations for optimal design
Jesper Carlsson; Mattias Sandberg; Anders Szepessy
- Volume: 43, Issue: 1, page 3-32
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topCarlsson, Jesper, Sandberg, Mattias, and Szepessy, Anders. "Symplectic Pontryagin approximations for optimal design." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 43.1 (2009): 3-32. <http://eudml.org/doc/245361>.
@article{Carlsson2009,
abstract = {The powerful Hamilton-Jacobi theory is used for constructing regularizations and error estimates for optimal design problems. The constructed Pontryagin method is a simple and general method for optimal design and reconstruction: the first, analytical, step is to regularize the hamiltonian; next the solution to its stationary hamiltonian system, a nonlinear partial differential equation, is computed with the Newton method. The method is efficient for designs where the hamiltonian function can be explicitly formulated and when the jacobian is sparse, but becomes impractical otherwise (e.g. for non local control constraints). An error estimate for the difference between exact and approximate objective functions is derived, depending only on the difference of the hamiltonian and its finite dimensional regularization along the solution path and its $\mathrm \{L\}^\{2\}$ projection, i.e. not on the difference of the exact and approximate solutions to the hamiltonian systems.},
author = {Carlsson, Jesper, Sandberg, Mattias, Szepessy, Anders},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {topology optimization; inverse problems; Hamilton-Jacobi; regularization; error estimates; impedance tomography; convexification; homogenization; optimal design problems; Pontryagin method; Newton method},
language = {eng},
number = {1},
pages = {3-32},
publisher = {EDP-Sciences},
title = {Symplectic Pontryagin approximations for optimal design},
url = {http://eudml.org/doc/245361},
volume = {43},
year = {2009},
}
TY - JOUR
AU - Carlsson, Jesper
AU - Sandberg, Mattias
AU - Szepessy, Anders
TI - Symplectic Pontryagin approximations for optimal design
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2009
PB - EDP-Sciences
VL - 43
IS - 1
SP - 3
EP - 32
AB - The powerful Hamilton-Jacobi theory is used for constructing regularizations and error estimates for optimal design problems. The constructed Pontryagin method is a simple and general method for optimal design and reconstruction: the first, analytical, step is to regularize the hamiltonian; next the solution to its stationary hamiltonian system, a nonlinear partial differential equation, is computed with the Newton method. The method is efficient for designs where the hamiltonian function can be explicitly formulated and when the jacobian is sparse, but becomes impractical otherwise (e.g. for non local control constraints). An error estimate for the difference between exact and approximate objective functions is derived, depending only on the difference of the hamiltonian and its finite dimensional regularization along the solution path and its $\mathrm {L}^{2}$ projection, i.e. not on the difference of the exact and approximate solutions to the hamiltonian systems.
LA - eng
KW - topology optimization; inverse problems; Hamilton-Jacobi; regularization; error estimates; impedance tomography; convexification; homogenization; optimal design problems; Pontryagin method; Newton method
UR - http://eudml.org/doc/245361
ER -
References
top- [1] G. Allaire, Shape optimization by the homogenization method, Applied Mathematical Sciences 146. Springer-Verlag, New York (2002). Zbl0990.35001MR1859696
- [2] M. Bardi and I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Systems & Control: Foundations & Applications. Birkhäuser Boston Inc., Boston, USA (1997). With appendices by M. Falcone and P. Soravia. Zbl0890.49011MR1484411
- [3] G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi, Mathématiques & Applications 17 (Berlin) [Mathematics & Applications]. Springer-Verlag, Paris (1994). Zbl0819.35002MR1613876
- [4] M.P. Bendsøe and O. Sigmund, Topology optimization, Theory, methods and applications. Springer-Verlag, Berlin (2003). Zbl1059.74001MR2008524
- [5] L. Borcea, Electrical impedance tomography. Inverse Problems 18 (2002) R99–R136. Zbl1031.35147MR1955896
- [6] S.C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, Texts in Applied Mathematics 15. Springer-Verlag, New York (1994). Zbl0804.65101MR1278258
- [7] P. Cannarsa and H. Frankowska, Some characterizations of optimal trajectories in control theory. SIAM J. Control Optim. 29 (1991) 1322–1347. Zbl0744.49011MR1132185
- [8] P. Cannarsa and H. Frankowska, Value function and optimality conditions for semilinear control problems. Appl. Math. Optim. 26 (1992) 139–169. Zbl0765.49001MR1166210
- [9] P. Cannarsa and H. Frankowska, Value function and optimality condition for semilinear co problems. II. Parabolic case. Appl. Math. Optim. 33 (1996) 1–33. Zbl0862.49021MR1359346
- [10] P. Cannarsa and C. Sinestrari, Semiconcave functions, Hamilton-Jacobi equations, and optimal control, Progress in Nonlinear Differential Equations and their Applications 58. Birkhäuser Boston Inc., Boston, USA (2004). Zbl1095.49003MR2041617
- [11] J. Carlsson, Symplectic reconstruction of data for heat and wave equations. Preprint (2008) http://arxiv.org/abs/0809.3621.
- [12] J. Céa, S. Garreau, P. Guillaume and M. Masmoudi, The shape and topological optimizations connection. Comput. Methods Appl. Mech. Engrg. 188 (2000) 713–726. IV WCCM, Part II (Buenos Aires, 1998). Zbl0972.74057MR1784106
- [13] M. Cheney and D. Isaacson, Distinguishability in impedance imaging. IEEE Trans. Biomed. Eng. 39 (1992) 852–860.
- [14] F.H. Clarke, Optimization and Nonsmooth Analysis, Canadian Mathematical Society Series in Mathematics. John Wiley and Sons, Inc. (1983). Zbl0582.49001MR709590
- [15] M.G. Crandall, L.C. Evans and P.-L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 282 (1984) 487–502. Zbl0543.35011MR732102
- [16] M.G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.) 27 (1992) 1–67. Zbl0755.35015MR1118699
- [17] M. Crouzeix and V. Thomée, The stability in and of the -projection onto finite element function spaces. Math. Comp. 48(178) (1987) 521–532. Zbl0637.41034MR878688
- [18] B. Dacorogna, Direct methods in the calculus of variations, Appl. Math. Sci. 78. Springer-Verlag, Berlin (1989). Zbl0703.49001MR990890
- [19] H.W. Engl, M. Hanke and A. Neubauer, Regularization of inverse problems, Mathematics and its Applications 375. Kluwer Academic Publishers Group, Dordrecht (1996). Zbl0859.65054MR1408680
- [20] L.C. Evans, Partial differential equations, Graduate Studies in Mathematics 19. American Mathematical Society, Providence, USA (1998). Zbl0902.35002
- [21] H. Frankowska, Contingent cones to reachable sets of control systems. SIAM J. Control Optim. 27 (1989) 170–198. Zbl0671.49030MR980229
- [22] J. Goodman, R.V. Kohn and L. Reyna, Numerical study of a relaxed variational problem from optimal design. Comput. Methods Appl. Mech. Engrg. 57 (1986) 107–127. Zbl0591.73119MR859964
- [23] E. Hairer, C. Lubich and G. Wanner, Geometric numerical integration, Structure-preserving algorithms for ordinary differential equations, Springer Series in Computational Mathematics 31. Springer-Verlag, Berlin (2002). Zbl0994.65135MR1904823
- [24] B. Kawohl, J. Stará and G. Wittum, Analysis and numerical studies of a problem of shape design. Arch. Rational Mech. Anal. 114 (1991) 349–363. Zbl0726.65071MR1100800
- [25] R.V. Kohn and A. McKenney, Numerical implementation of a variational method for electrical impedance tomography. Inverse Problems 6 (1990) 389–414. Zbl0718.65089MR1057033
- [26] R.V. Kohn and G. Strang, Optimal design and relaxation of variational problems. I. Comm. Pure Appl. Math. 39 (1986) 113–137. Zbl0609.49008MR820342
- [27] R.V. Kohn and G. Strang, Optimal design and relaxation of variational problems. II. Comm. Pure Appl. Math. 39 (1986) 139–182. Zbl0621.49008MR820067
- [28] R.V. Kohn and G. Strang, Optimal design and relaxation of variational problems. III. Comm. Pure Appl. Math. 39 (1986) 353–377. Zbl0694.49004MR829845
- [29] F. Natterer, The mathematics of computerized tomography, Classics in Applied Mathematics 32. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, USA (2001). Reprint of the 1986 original. Zbl0973.92020MR1847845
- [30] O. Pironneau, Optimal shape design for elliptic systems, Springer Series in Computational Physics. Springer-Verlag, New York (1984). Zbl0534.49001MR725856
- [31] R.T. Rockafellar, Convex analysis, Princeton Mathematical Series 28. Princeton University Press, Princeton, USA (1970). Zbl0193.18401MR274683
- [32] M. Sandberg, Convergence rates for numerical approximations of an optimally controlled Ginzburg-Landau equation. Preprint (2008) http://arxiv.org/abs/0809.1834.
- [33] M. Sandberg and A. Szepessy, Convergence rates of symplectic Pontryagin approximations in optimal control theory. ESAIM: M2AN 40 (2006) 149–173. Zbl1091.49027MR2223508
- [34] D. Tataru, Viscosity solutions for Hamilton-Jacobi equations with unbounded nonlinear term: a simplified approach. J. Diff. Eq. 111 (1994) 123–146. Zbl0810.34060MR1280618
- [35] A.N. Tikhonov and V.Y. Arsenin, Solutions of ill-posed problems, in Scripta Series in Mathematics, V.H. Winston & Sons, Washington, D.C., John Wiley & Sons, New York (1977). Translated from the Russian, Preface by translation editor F. John. Zbl0354.65028MR455365
- [36] C.R. Vogel, Computational methods for inverse problems, Frontiers in Applied Mathematics 23. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002). With a foreword by H.T. Banks. Zbl1008.65103MR1928831
- [37] A. Wexler, B. Fry and M.R. Neuman, Impedance-computed tomography algorithm and system. Appl. Opt. 24 (1985) 3985–3992.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.