Analysis of a prototypical multiscale method coupling atomistic and continuum mechanics
Xavier Blanc; Claude Le Bris; Frédéric Legoll
- Volume: 39, Issue: 4, page 797-826
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] G. Alberti and C. Mantegazza, A note on the theory of SBV functions. Bollettino U.M.I. Sez. B 7 (1997) 375–382. Zbl0877.49001
- [2] L. Ambrosio, L. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York (2000). Zbl0957.49001MR1857292
- [3] X. Blanc, C. Le Bris and F. Legoll, work in preparation, and Analysis of a prototypical multiscale method coupling atomistic and continuum mechanics, Preprint, Laboratoire Jacques-Louis Lions, Université Paris 6 (2004), available at http://www.ann.jussieu.fr/publications/2004/R04029.html Zbl1330.74066
- [4] X. Blanc, C. Le Bris and P.-L. Lions, From molecular models to continuum mechanics. Arch. Rational Mech. Anal. 164 (2002) 341–381. Zbl1028.74005
- [5] A. Braides, G. Dal Maso and A. Garroni, Variational formulation of softening phenomena in fracture mechanics: the one-dimensional case. Arch. Rational Mech. Anal. 146 (1999) 23–58. Zbl0945.74006
- [6] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer (1991). Zbl0804.65101
- [7] J.Q. Broughton, F.F. Abraham, N. Bernstein and E. Kaxiras, Concurrent coupling of length scales: Methodology and application. Phys. Rev. B 60 (1999) 2391–2403.
- [8] P.G. Ciarlet, An method for a non-smooth boundary value problem. Aequationes Math. 2 (1968) 39–49. Zbl0159.11703
- [9] P.G. Ciarlet, Mathematical Elasticity, Vol. I: Three-Dimensional Elasticity. Studies in Mathematics and its Applications, North Holland (1988). Zbl0648.73014MR936420
- [10] P.G. Ciarlet, Basic Error Estimates for Elliptic Problems, in Handbook of Numerical Analysis, Vol. II, P.G. Ciarlet, J.-L. Lions, Eds., North-Holland (1991) 17–351. Zbl0875.65086
- [11] W. E and P. Ming, private communication.
- [12] J. Knap and M. Ortiz, An analysis of the Quasicontinuum method. J. Mech. Phys. Solids 49 (2001) 1899–1923. Zbl1002.74008
- [13] P. Le Tallec, Numerical Methods for nonlinear three-dimensional elasticity, in Handbook of Numerical Analysis, Vol. III, P.G. Ciarlet, J.-L. Lions, Eds., North-Holland (1994) 465–622. Zbl0875.73234
- [14] F. Legoll, Méthodes moléculaires et multi-échelles pour la simulation numérique des matériaux(Molecular and multiscale methods for the numerical simulation of materials), Ph.D. Thesis, Université Pierre et Marie Curie (France), 2004, available at http://cermics.enpc.fr/legoll/theseLegoll.pdf
- [15] J.E. Marsden and T.J.R. Hugues, Mathematical foundations of Elasticity. Dover (1994). MR1262126
- [16] R. Miller, E.B. Tadmor, R. Phillips and M. Ortiz, Quasicontinuum simulation of fracture at the atomic scale. Model. Simul. Mater. Sci. Eng. 6 (1998) 607–638.
- [17] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Springer (1997). Zbl0803.65088MR1299729
- [18] E.B. Tadmor, M. Ortiz and R. Phillips, Quasicontinuum analysis of defects in solids. Philos. Mag. A 73 (1996) 1529–1563.
- [19] E.B. Tadmor and R. Phillips, Mixed atomistic and continuum models of deformation in solids. Langmuir 12 (1996) 4529–4534.
- [20] E.B. Tadmor, G.S. Smith, N. Bernstein and E. Kaxiras, Mixed finite element and atomistic formulation for complex crystals. Phys. Rev. B 59 (1999) 235–245.
- [21] V.B. Shenoy, R. Miller, E.B. Tadmor, R. Phillips and M. Ortiz, Quasicontinuum models of interfacial structure and deformation. Phys. Rev. Lett. 80 (1998) 742–745.
- [22] V.B. Shenoy, R. Miller, E.B. Tadmor, D. Rodney, R. Phillips and M. Ortiz, An adaptative finite element approach to atomic-scale mechanics – the Quasicontinuum method, J. Mech. Phys. Solids 47 (1999) 611–642. Zbl0982.74071
- [23] C. Truesdell and W. Noll, The nonlinear field theories of mechanics theory of elasticity. Handbuch der Physik, III/3, Springer Berlin (1965) 1–602. Zbl1068.74002
- [24] L. Truskinovsky, Fracture as a phase transformation, in Contemporary research in mechanics and mathematics of materials, Ericksen’s Symposium, R. Batra and M. Beatty, Eds., CIMNE, Barcelona (1996) 322–332.
- [25] K.J. Van Vliet, J. Li, T. Zhu, S. Yip and S. Suresh, Quantifying the early stages of plasticity through nanoscale experiments and simulations. Phys. Rev. B 67 (2003) 104105.
- [26] P. Zhang, P.A. Klein, Y. Huang, H. Gao and P.D. Wu, Numerical simulation of cohesive fracture by the virtual-internal-bond model. Comput. Model. Engrg. Sci. 3 (2002) 263–289. Zbl1066.74008