# Shape optimization of piezoelectric sensors or actuators for the control of plates

Emmanuel Degryse; Stéphane Mottelet

ESAIM: Control, Optimisation and Calculus of Variations (2005)

- Volume: 11, Issue: 4, page 673-690
- ISSN: 1292-8119

## Access Full Article

top## Abstract

top## How to cite

topDegryse, Emmanuel, and Mottelet, Stéphane. "Shape optimization of piezoelectric sensors or actuators for the control of plates." ESAIM: Control, Optimisation and Calculus of Variations 11.4 (2005): 673-690. <http://eudml.org/doc/245405>.

@article{Degryse2005,

abstract = {This paper deals with a new method to control flexible structures by designing non-collocated sensors and actuators satisfying a pseudo-collocation criterion in the low-frequency domain. This technique is applied to a simply supported plate with a point force actuator and a piezoelectric sensor, for which we give some theoretical and numerical results. We also compute low-order controllers which stabilize pseudo-collocated systems and the closed-loop behavior show that this approach is very promising.},

author = {Degryse, Emmanuel, Mottelet, Stéphane},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {collocation; piezoelectric sensors/actuators; positive-real systems; topology optimization},

language = {eng},

number = {4},

pages = {673-690},

publisher = {EDP-Sciences},

title = {Shape optimization of piezoelectric sensors or actuators for the control of plates},

url = {http://eudml.org/doc/245405},

volume = {11},

year = {2005},

}

TY - JOUR

AU - Degryse, Emmanuel

AU - Mottelet, Stéphane

TI - Shape optimization of piezoelectric sensors or actuators for the control of plates

JO - ESAIM: Control, Optimisation and Calculus of Variations

PY - 2005

PB - EDP-Sciences

VL - 11

IS - 4

SP - 673

EP - 690

AB - This paper deals with a new method to control flexible structures by designing non-collocated sensors and actuators satisfying a pseudo-collocation criterion in the low-frequency domain. This technique is applied to a simply supported plate with a point force actuator and a piezoelectric sensor, for which we give some theoretical and numerical results. We also compute low-order controllers which stabilize pseudo-collocated systems and the closed-loop behavior show that this approach is very promising.

LA - eng

KW - collocation; piezoelectric sensors/actuators; positive-real systems; topology optimization

UR - http://eudml.org/doc/245405

ER -

## References

top- [1] G. Allaire, Shape optimization by the homogenization method. Springer-Verlag, New York (2002). Zbl0990.35001MR1859696
- [2] H.T. Banks, R.C. Smith and Y. Wang, Smart material structures, modelling, estimation and control. Res. Appl. Math. Masson, Paris (1996). Zbl0882.93001
- [3] D. Chenais and E. Zuazua, Finite Element Approximation on Elliptic Optimal Design. C.R. Acad. Sci. Paris Ser. I 338 729–734 (2004). Zbl1052.65059
- [4] M.J. Chen and C.A. Desoer, Necessary and sufficient conditions for robust stability of linear distributed feedback systems. Internat. J. Control 35 (1982) 255–267. Zbl0489.93041
- [5] R.F. Curtain and B. Van Keulen, Robust control with respect to coprime factors of infinite-dimensional positive real systems. IEEE Trans. Autom. Control 37 (1992) 868–871. Zbl0760.93061
- [6] R.F. Curtain and B. Van Keulen, Equivalence of input-output stability and exponential stability for infinite dimensional systems. J. Math. Syst. Theory 21 (1988) 19–48. Zbl0657.93050
- [7] R.F. Curtain, A synthesis of Time and Frequency domain methods for the control of infinite dimensional systems: a system theoretic approach, in Control and Estimation in Distributed Parameter Systems, H.T. Banks Ed. SIAM (1988) 171–224.
- [8] R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks. SIAM J. Control Optim. 26 (1988) 697–713. Zbl0643.93050
- [9] E. Degryse, Étude d’une nouvelle approche pour la conception de capteurs et d’actionneurs pour le contrôle des systèmes flexibles abstraits. Ph.D. Thesis, Université de Technologie de Compiègne, France (2002).
- [10] P.H. Destuynder, I. Legrain, L. Castel and N. Richard, Theoretical, numerical and experimental discussion on the use of piezoelectric devices for control-structure interaction. Eur. J. Mech A/solids 11 (1992) 181–213.
- [11] B.A. Francis, A Course in ${H}_{\infty}$ Control Theory. Lecture notes in control and information sciences. Springer-Verlag Berlin (1988). Zbl0624.93003
- [12] P. Freitas and E. Zuazua, Stability results for the wave equation with indefinite damping. J. Diff. Equations 132 (1996) 338–352. Zbl0878.35067
- [13] J.S. Freudenberg and P.D. Looze, Right half plane poles and zeros and design tradeoffs in feedback systems. IEEE Trans. Autom. Control 30 (1985) 555–565. Zbl0562.93022
- [14] J.S. Gibson and A. Adamian, Approximation theory for Linear-Quadratic-Gaussian control of flexible structures. SIAM J. Control Optim. 29 (1991) 1–37. Zbl0788.93027
- [15] A. Haraux, Systèmes dynamiques dissipatifs et applications. Masson, Paris (1990). Zbl0726.58001MR1084372
- [16] P. Hébrard and A. Henrot, Optimal shape and position of the actuators for the stabilization of a string. Syst. Control Lett. 48 (2003) 199–209. Zbl1134.93399
- [17] P. Hébrard and A. Henrot, A spillover phenomenon in the optimal location of actuators. SIAM J. Control Optim., to appear. Zbl1083.49002MR2177160
- [18] C. Inniss and T. Williams, Sensitivity of the zeros of flexible structures to sensor and actuator location. IEEE Trans. Autom. Control 45 (2000) 157–160. Zbl0973.93006
- [19] S. Jaffard, M. Tucsnak and E. Zuazua, Singular internal stabilization of the wave equation. J. Differential Equations 145 (1998) 184–215. Zbl0920.35029
- [20] T. Kato, Perturbation theory for linear operators. Springer-Verlag, Berlin (1980). Zbl0435.47001
- [21] B. van Keulen, ${H}_{\infty}$ control for distributed parameter systems: a state-space approach. Birkaüser, Boston (1993). Zbl0788.93018MR1269323
- [22] I. Lasiecka and R. Triggiani, Non-dissipative boundary stabilization of the wave equation via boundary observation. J. Math. Pures Appl. 63 (1984) 59–80.
- [23] D.G. Luenberger, Optimization by Vector Space Methods. John Wiley and Sons, New York (1969). Zbl0176.12701MR238472
- [24] F. Macia and E. Zuazua, On the lack of controllability of wave equations: a Gaussian beam approach. Asymptotic Analysis 32 (2002) 1–26. Zbl1024.35062
- [25] M. Minoux, Programmation Mathématique: théorie et algorithmes, tome 2. Dunod, Paris (1983). Zbl0546.90056MR714151
- [26] O. Morgül, Dynamic boundary control of an Euler-Bernoulli beam. IEEE Trans. Autom. Control 37 (1992) 639–642.
- [27] S. Mottelet, Controllability and stabilization of a canal with wave generators. SIAM J. Control Optim. 38 (2000) 711–735. Zbl0966.76015
- [28] V.M. Popov, Hyperstability of Automatic Control Systems. Springer, New York (1973).
- [29] F. Shimizu and S. Hara, A method of structure/control design Integration based on finite frequency conditions and its application to smart arm structure design, Proc. of SICE 2002, Osaka, (August 2002).
- [30] V.A. Spector and H. Flashner, Sensitivity of structural models for non collocated control systems. Trans. ASME 111 (1989) 646–655. Zbl0705.73154
- [31] M. Tucsnak and S. Jaffard, Regularity of plate equations with control concentrated in interior curves. Proc. Roy. Soc. Edinburg A 127 (1997) 1005–1025. Zbl0889.35059
- [32] Y. Zhang, Solving Large-Scale Linear Programs by Interior-Point Methods Under the MATLAB Environment. Technical Report TR96-01, Department of Mathematics and Statistics, University of Maryland, Baltimore, MD (July 1995). Zbl0916.90208

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.