Flux-upwind stabilization of the discontinuous Petrov–Galerkin formulation with Lagrange multipliers for advection-diffusion problems

Paola Causin; Riccardo Sacco; Carlo L. Bottasso

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2005)

  • Volume: 39, Issue: 6, page 1087-1114
  • ISSN: 0764-583X

Abstract

top
In this work we consider the dual-primal Discontinuous Petrov–Galerkin (DPG) method for the advection-diffusion model problem. Since in the DPG method both mixed internal variables are discontinuous, a static condensation procedure can be carried out, leading to a single-field nonconforming discretization scheme. For this latter formulation, we propose a flux-upwind stabilization technique to deal with the advection-dominated case. The resulting scheme is conservative and satisfies a discrete maximum principle under standard geometrical assumptions on the computational grid. A convergence analysis is developed, proving first-order accuracy of the method in a discrete H 1 -norm, and the numerical performance of the scheme is validated on benchmark problems with sharp internal and boundary layers.

How to cite

top

Causin, Paola, Sacco, Riccardo, and Bottasso, Carlo L.. "Flux-upwind stabilization of the discontinuous Petrov–Galerkin formulation with Lagrange multipliers for advection-diffusion problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 39.6 (2005): 1087-1114. <http://eudml.org/doc/245416>.

@article{Causin2005,
abstract = {In this work we consider the dual-primal Discontinuous Petrov–Galerkin (DPG) method for the advection-diffusion model problem. Since in the DPG method both mixed internal variables are discontinuous, a static condensation procedure can be carried out, leading to a single-field nonconforming discretization scheme. For this latter formulation, we propose a flux-upwind stabilization technique to deal with the advection-dominated case. The resulting scheme is conservative and satisfies a discrete maximum principle under standard geometrical assumptions on the computational grid. A convergence analysis is developed, proving first-order accuracy of the method in a discrete $H^1$-norm, and the numerical performance of the scheme is validated on benchmark problems with sharp internal and boundary layers.},
author = {Causin, Paola, Sacco, Riccardo, Bottasso, Carlo L.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite element methods; mixed and hybrid methods; discontinuous Galerkin and Petrov–Galerkin methods; nonconforming finite elements; stabilized finite elements; upwinding; advection-diffusion problems; numerical examples; convergence; discontinuous Galerkin and Petrov-Galerkin methods},
language = {eng},
number = {6},
pages = {1087-1114},
publisher = {EDP-Sciences},
title = {Flux-upwind stabilization of the discontinuous Petrov–Galerkin formulation with Lagrange multipliers for advection-diffusion problems},
url = {http://eudml.org/doc/245416},
volume = {39},
year = {2005},
}

TY - JOUR
AU - Causin, Paola
AU - Sacco, Riccardo
AU - Bottasso, Carlo L.
TI - Flux-upwind stabilization of the discontinuous Petrov–Galerkin formulation with Lagrange multipliers for advection-diffusion problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2005
PB - EDP-Sciences
VL - 39
IS - 6
SP - 1087
EP - 1114
AB - In this work we consider the dual-primal Discontinuous Petrov–Galerkin (DPG) method for the advection-diffusion model problem. Since in the DPG method both mixed internal variables are discontinuous, a static condensation procedure can be carried out, leading to a single-field nonconforming discretization scheme. For this latter formulation, we propose a flux-upwind stabilization technique to deal with the advection-dominated case. The resulting scheme is conservative and satisfies a discrete maximum principle under standard geometrical assumptions on the computational grid. A convergence analysis is developed, proving first-order accuracy of the method in a discrete $H^1$-norm, and the numerical performance of the scheme is validated on benchmark problems with sharp internal and boundary layers.
LA - eng
KW - finite element methods; mixed and hybrid methods; discontinuous Galerkin and Petrov–Galerkin methods; nonconforming finite elements; stabilized finite elements; upwinding; advection-diffusion problems; numerical examples; convergence; discontinuous Galerkin and Petrov-Galerkin methods
UR - http://eudml.org/doc/245416
ER -

References

top
  1. [1] R.A. Adams, Sobolev Spaces. Academic Press, New York (1975). Zbl0314.46030MR450957
  2. [2] D.N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: Implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér. 19 (1985) 7–32. Zbl0567.65078
  3. [3] D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Discontinuous Galerkin methods. Lect. Notes Comput. Sci. Engrg. 11, Springer-Verlag (2000) 89–101. Zbl0948.65127
  4. [4] I. Babuska and J. Osborn, Generalized finite element methods, their performance and their relation to mixed methods. SIAM J. Numer. Anal. 20 (1983) 510–536. Zbl0528.65046
  5. [5] J. Baranger, J.F. Maitre and F. Oudin, Connection between finite volume and mixed finite element methods. RAIRO Modél. Math. Anal. Numér. 30 (1996) 445–465. Zbl0857.65116
  6. [6] C.L. Bottasso, S. Micheletti and R. Sacco, The Discontinuous Petrov-Galerkin method for elliptic problems. Comput. Methods Appl. Mech. Engrg. 191 (2002) 3391–3409. Zbl1010.65050
  7. [7] C.L. Bottasso, S. Micheletti and R. Sacco, A multiscale formulation of the Discontinuous Petrov–Galerkin method for advective-diffusion problems. Comput. Methods Appl. Mech. Engrg. 194 (2005) 2819–2838. Zbl1093.76030
  8. [8] F. Brezzi, L.D. Marini and P. Pietra, Numerical simulation of semiconductor devices. Comput. Meths. Appl. Mech. Engrg. 75 (1989) 493–514. Zbl0698.76125
  9. [9] F. Brezzi, L.D. Marini and P. Pietra, Two-dimensional exponential fitting and applications to drift-diffusion models. SIAM J. Numer. Anal. 26 (1989) 1342–1355. Zbl0686.65088
  10. [10] P. Causin, Mixed-hybrid Galerkin and Petrov-Galerkin finite element formulations in fluid mechanics. Ph.D. Thesis, Università degli Studi di Milano (2003). 
  11. [11] P. Causin and R. Sacco, Mixed-hybrid Galerkin and Petrov-Galerkin finite element formulations in continuum mechanics. in Proc. of the Fifth World Congress on Computational Mechanics (WCCM V), Vienna, Austria. H.A. Mang, F.G. Rammerstorfer and J. Eberhardsteiner Eds., Vienna University of Technology, Austria, http://wccm.tuwien.ac.at, July 7–12 (2002). 
  12. [12] P. Causin and R. Sacco, A Discontinuous Petrov–Galerkin method with Lagrangian multipliers for second order elliptic problems. SIAM J. Numer. Anal. 43 (2005) 280–302. Zbl1087.65105
  13. [13] P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1978). Zbl0383.65058MR520174
  14. [14] B. Cockburn and J. Gopalakhrisnan, A characterization of hybridized mixed methods for second order elliptic problems. SIAM Jour. Numer. Anal. 42 (2003) 283–301. Zbl1084.65113
  15. [15] M. Crouzeix and P.A. Raviart, Conforming and non-conforming finite element methods for solving the stationary Stokes equations. RAIRO, R-3 (1973) 33–76. Zbl0302.65087
  16. [16] C. Dawson, Godunov mixed methods for advection-diffusion equations in multidimensions. SIAM J. Numer. Anal. 30 (1993) 1315–1332. Zbl0791.65062
  17. [17] C. Dawson and V. Aizinger, Upwind-mixed methods for transport equations. Comp. Geosc. 3 (1999) 93–110. Zbl0962.65084
  18. [18] J. Gopalakhrisnan and G. Kanschat, A multilevel discontinuous galerkin method. Numer. Math. 95 (2003) 527–550. Zbl1044.65084
  19. [19] J. Jaffré, Décentrage et éléments finis mixtes pour les équations de diffusion-convection. Calcolo 2 (1984) 171–197. Zbl0562.65077
  20. [20] J.W. Jerome, Analysis of Charge Transport. Springer-Verlag, Berlin, Heidelberg (1996). Zbl0835.65151MR1437143
  21. [21] J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Dunod (1968). Zbl0165.10801
  22. [22] L.D. Marini, An inexpensive method for the evaluation of the solution of the lower order Raviart–Thomas method. SIAM J. Numer. Anal. 22 (1985) 493–496. Zbl0573.65082
  23. [23] P.A. Markowich, The Stationary Semiconductor Device Equations. Springer-Verlag, Wien, New York (1986). MR821965
  24. [24] S. Micheletti, R. Sacco and F. Saleri, On some mixed finite element methods with numerical integration. SIAM J. Sci. Comput. 23 (2001) 245–270. Zbl0992.65126
  25. [25] J.J. Miller and S. Wang, A new non-conforming Petrov–Galerkin finite element method with triangular elements for an advection-diffusion problem. IMA J. Numer. Anal. 14 (1994) 257–276. Zbl0806.65111
  26. [26] A. Mizukami and T.J.R. Hughes, A Petrov-Galerkin finite element method for convection–dominated flows: an accurate upwinding technique satisfying the discrete maximum principle. Comput. Meth. Appl. Mech. Engrg. 50 (1985) 181–193. Zbl0553.76075
  27. [27] K. Ohmori and T. Ushijima, A technique of upstream type applied to a linear nonconforming finite element approximation of convective diffusion equations. RAIRO 3 (1984) 309–332. Zbl0586.65080
  28. [28] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Springer-Verlag, New York, Berlin (1994). Zbl0803.65088MR1299729
  29. [29] P.A. Raviart and J.M. Thomas, Primal hybrid finite element methods for 2nd order elliptic equations. Math. Comp. 31-138 (1977) 391–413. Zbl0364.65082
  30. [30] J.E. Roberts and J.M. Thomas, Mixed and hybrid methods. In Finite Element Methods, Part I. P.G. Ciarlet and J.L. Lions (Eds.), North-Holland, Amsterdam 2 (1991). Zbl0875.65090MR1115239
  31. [31] H.G. Roos, M. Stynes and L. Tobiska, Numerical methods for singularly perturbed differential equations. Springer-Verlag, Berlin, Heidelberg (1996). Zbl0844.65075MR1477665
  32. [32] R. Sacco, E. Gatti and L. Gotusso, The patch test as a validation of a new finite element for the solution of convection-diffusion equations. Comp. Meth. Appl. Mech. Engrg. 124 (1995) 113–124. Zbl0948.78013
  33. [33] P. Siegel, R. Mosé, Ph. Ackerer and J. Jaffré, Solution of the advection-diffusion equation using a combination of discontinuous and mixed finite elements. Inter. J. Numer. Methods Fluids 24 (1997) 593–613. Zbl0894.76041
  34. [34] R. Temam, Navier-Stokes Equations. North-Holland, Amsterdam (1977). Zbl0383.35057MR769654

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.