Inverted finite elements : a new method for solving elliptic problems in unbounded domains

Tahar Zamène Boulmezaoud

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2005)

  • Volume: 39, Issue: 1, page 109-145
  • ISSN: 0764-583X

Abstract

top
In this paper, we propose a new numerical method for solving elliptic equations in unbounded regions of n . The method is based on the mapping of a part of the domain into a bounded region. An appropriate family of weighted spaces is used for describing the growth or the decay of functions at large distances. After exposing the main ideas of the method, we analyse carefully its convergence. Some 3D computational results are displayed to demonstrate its efficiency and its high performance.

How to cite

top

Boulmezaoud, Tahar Zamène. "Inverted finite elements : a new method for solving elliptic problems in unbounded domains." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 39.1 (2005): 109-145. <http://eudml.org/doc/245423>.

@article{Boulmezaoud2005,
abstract = {In this paper, we propose a new numerical method for solving elliptic equations in unbounded regions of $\mathbb \{R\}^n$. The method is based on the mapping of a part of the domain into a bounded region. An appropriate family of weighted spaces is used for describing the growth or the decay of functions at large distances. After exposing the main ideas of the method, we analyse carefully its convergence. Some 3D computational results are displayed to demonstrate its efficiency and its high performance.},
author = {Boulmezaoud, Tahar Zamène},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {unbounded domains; inverted elements method; weighted Sobolev spaces; finite elements; elliptic problems; convergence; weighted spaces; unbounded region; numerical experiments},
language = {eng},
number = {1},
pages = {109-145},
publisher = {EDP-Sciences},
title = {Inverted finite elements : a new method for solving elliptic problems in unbounded domains},
url = {http://eudml.org/doc/245423},
volume = {39},
year = {2005},
}

TY - JOUR
AU - Boulmezaoud, Tahar Zamène
TI - Inverted finite elements : a new method for solving elliptic problems in unbounded domains
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2005
PB - EDP-Sciences
VL - 39
IS - 1
SP - 109
EP - 145
AB - In this paper, we propose a new numerical method for solving elliptic equations in unbounded regions of $\mathbb {R}^n$. The method is based on the mapping of a part of the domain into a bounded region. An appropriate family of weighted spaces is used for describing the growth or the decay of functions at large distances. After exposing the main ideas of the method, we analyse carefully its convergence. Some 3D computational results are displayed to demonstrate its efficiency and its high performance.
LA - eng
KW - unbounded domains; inverted elements method; weighted Sobolev spaces; finite elements; elliptic problems; convergence; weighted spaces; unbounded region; numerical experiments
UR - http://eudml.org/doc/245423
ER -

References

top
  1. [1] R.A. Adams, Compact imbeddings of weighted Sobolev spaces on unbounded domains. J. Differential Equations 9 (1971) 325–334. Zbl0209.15004
  2. [2] F. Alliot and C. Amrouche, Problème de Stokes dans n et espaces de Sobolev avec poids. C. R. Acad. Sci. Paris Sér. I Math. 325 (1997) 1247–1252. Zbl0894.35082
  3. [3] C. Amrouche, V. Girault and J. Giroire, Weighted Sobolev spaces for Laplace’s equation in n . J. Math. Pures Appl. (9) 73 (1994) 579–606. Zbl0836.35038
  4. [4] C. Amrouche, V. Girault and J. Giroire, Dirichlet and Neumann exterior problems for the n -dimensional Laplace operator: an approach in weighted Sobolev spaces. J. Math. Pures Appl. (9) 76 (1997) 55–81. Zbl0878.35029
  5. [5] J. Bérenger, A perfectly matched layer for absoption of electromagnetics waves. J. Comput. Physics 114 (1994) 185–200. Zbl0814.65129
  6. [6] J. Bérenger, Perfectly matched layer for the fdtd solution of wave-structure interaction problems. IEEE Trans. Antennas Propagat. 44 (1996) 110–117. 
  7. [7] P. Bettess and O.C. Zienkiewicz, Diffraction and refraction of surface waves using finite and infinite elements. Internat. J. Numer. Methods Engrg. 11 (1977) 1271–1290. Zbl0367.76014
  8. [8] T.Z. Boulmezaoud, Vector potentials in the half-space of 3 . C. R. Acad. Sci. Paris Sér. I Math. 332 (2001) 711–716. Zbl0981.35013
  9. [9] T.Z. Boulmezaoud, On the Stokes system and on the biharmonic equation in the half-space: an approach via weighted Sobolev spaces. Math. Methods Appl. Sci. 25 (2002) 373–398. Zbl0998.35037
  10. [10] T.Z. Boulmezaoud, On the Laplace operator and on the vector potential problems in the half-space: an approach using weighted spaces. Math. Methods Appl. Sci. 26 (2003) 633–669. Zbl1290.35034
  11. [11] D.S. Burnett, A three-dimensional acoustic infinite element based on a prolate spheroidal multipole expansion. J. Acoust. Soc. Amer. 96 (1994) 2798–2816. 
  12. [12] C. Canuto, S.I. Hariharan, L. Lustman, Spectral methods for exterior elliptic problems. Numer. Math. 46 (1985) 505–520. Zbl0548.65082
  13. [13] Y. Choquet-Bruhat and D. Christodoulou, Elliptic systems in H s , δ spaces on manifolds which are Euclidean at infinity. Acta Math. 146 (1981) 129–150. Zbl0484.58028
  14. [14] Ph.-G. Ciarlet, The finite element method for elliptic problems. North-Holland Publishing Co., Amsterdam (1978). Zbl0383.65058MR520174
  15. [15] D.L. Colton and R. Kress, Integral equation methods in scattering theory. Pure Appl. Math. John Wiley & Sons Inc., New York (1983). Zbl0522.35001MR700400
  16. [16] L. Demkowicz and F. Ihlenburg, Analysis of a coupled finite-infinite element method for exterior Helmholtz problems. Numer. Math. 88 (2001) 43–73. Zbl1013.65122
  17. [17] J. Deny and J.L. Lions, Les espaces du type de Beppo Levi. Ann. Inst. Fourier, Grenoble 5 (1955) 305–370, (1953–54). Zbl0065.09903
  18. [18] K. Gerdes, A summary of infinite element formulations for exterior Helmholtz problems. Comput. Methods Appl. Mech. Engrg. 164 (1998) 95–105. Zbl0943.65126
  19. [19] K. Gerdes and L. Demkowicz, Solution of 3 D-Laplace and Helmholtz equations in exterior domains using h p -infinite elements. Comput. Methods Appl. Mech. Engrg. 137 (1996) 239–273. Zbl0881.73126
  20. [20] V. Girault, The divergence, curl and Stokes operators in exterior domains of n . In Recent developments in theoretical fluid mechanics (Paseky, 1992), Pitman Res. Notes Math. Ser. Longman Sci. Tech., Harlow 291 (1993) 34–77. Zbl0837.35115
  21. [21] V. Girault, The Stokes problem and vector potential operator in three-dimensional exterior domains: an approach in weighted Sobolev spaces. Differential Integral Equations 7 (1994) 535–570. Zbl0831.35125
  22. [22] J. Giroire, Étude de quelques problèmes aux limites extérieures et résolution par équations intégrales. Thèse de Doctorat d’Etat, Université Pierre et Marie Curie, Paris (1987). 
  23. [23] J. Giroire and J.-C. Nédélec, Numerical solution of an exterior Neumann problem using a double layer potential. Math. Comp. 32 (1978) 973–990. Zbl0405.65060
  24. [24] L. Halpern, A spectral method for the Stokes problem in three-dimensional unbounded domains. Math. Comp. 70 (2001) 1417–1436 (electronic). Zbl0971.35006
  25. [25] B. Hanouzet, Espaces de Sobolev avec poids application au problème de Dirichlet dans un demi espace. Rend. Sem. Mat. Univ. Padova 46 (1971) 227–272. Zbl0247.35041
  26. [26] G.H. Hardy, J.E. Littlewood and G. Pólya, Inequalities. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1988). Zbl0634.26008MR944909JFM60.0169.01
  27. [27] L. Hörmander and J.L. Lions, Sur la complétion par rapport à une intégrale de Dirichlet. Math. Scand. 4 (1956) 259–270. Zbl0078.28003
  28. [28] F. Ihlenburg, Finite element analysis of acoustic scattering, volume 132 of Applied Mathematical Sciences. Springer-Verlag, New York (1998). Zbl0908.65091MR1639879
  29. [29] V.A. Kondratev, Boundary value problems for elliptic equations in domains with conical or angular points. Trudy Moskov. Mat. Obšč. 16 (1967) 209–292. Zbl0194.13405
  30. [30] A. Kufner, Weighted Sobolev spaces. A Wiley-Interscience Publication. John Wiley & Sons Inc., New York (1985). Zbl0567.46009MR802206
  31. [31] M. Laib and T.Z. Boulmezaoud, Some properties of weighted sobolev spaces in unbounded domains. In preparation. 
  32. [32] M.N. Le Roux, Méthode d’éléments finis pour la résolution numérique de problèmes extérieurs en dimension 2 . RAIRO Anal. Numér. 11 (1977) 27–60. Zbl0382.65055
  33. [33] V.G. Maz’ya and B.A. Plamenevskii, Weighted spaces with inhomogeneous norms, and boundary value problems in domains with conical points, in Elliptische Differentialgleichungen (Meeting, Rostock, 1977). Wilhelm-Pieck-Univ. Rostock (1978) 161–190. Zbl0429.35031
  34. [34] J.-C. Nédélec, Curved finite element methods for the solution of singular integral equations on surfaces in 3 . Comput. Methods Appl. Mech. Engrg. 8 (1976) 61–80. Zbl0333.45015
  35. [35] J.-C. Nédélec. Résolution des Équations de Maxwell par Méthodes Intégrales. Cours de D.E.A. École Polytechnique, Paris (1998). 
  36. [36] V. Rokhlin, Solution of acoustic scattering problems by means of second kind integral equations. Wave Motion 5 (1983) 257–272. Zbl0522.73022

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.